BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10387066)

  • 1. An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha.
    Plastino J; Green EL; Sanders-Loehr J; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8204-16. PubMed ID: 10387066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between conserved consensus site residues and the productive conformation for the TPQ cofactor in a copper-containing amine oxidase from yeast.
    Schwartz B; Green EL; Sanders-Loehr J; Klinman JP
    Biochemistry; 1998 Nov; 37(47):16591-600. PubMed ID: 9843426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase.
    Hevel JM; Mills SA; Klinman JP
    Biochemistry; 1999 Mar; 38(12):3683-93. PubMed ID: 10090756
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants.
    Murray JM; Saysell CG; Wilmot CM; Tambyrajah WS; Jaeger J; Knowles PF; Phillips SE; McPherson MJ
    Biochemistry; 1999 Jun; 38(26):8217-27. PubMed ID: 10387067
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Rates of oxygen and hydrogen exchange as indicators of TPQ cofactor orientation in amine oxidases.
    Green EL; Nakamura N; Dooley DM; Klinman JP; Sanders-Loehr J
    Biochemistry; 2002 Jan; 41(2):687-96. PubMed ID: 11781110
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mechanism-based inactivation of a yeast methylamine oxidase mutant: implications for the functional role of the consensus sequence surrounding topaquinone.
    Cai D; Dove J; Nakamura N; Sanders-Loehr J; Klinman JP
    Biochemistry; 1997 Sep; 36(38):11472-8. PubMed ID: 9298967
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Investigation of spectroscopic intermediates during copper-binding and TPQ formation in wild-type and active-site mutants of a copper-containing amine oxidase from yeast.
    Dove JE; Schwartz B; Williams NK; Klinman JP
    Biochemistry; 2000 Apr; 39(13):3690-8. PubMed ID: 10736168
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes.
    Kishishita S; Okajima T; Kim M; Yamaguchi H; Hirota S; Suzuki S; Kuroda S; Tanizawa K; Mure M
    J Am Chem Soc; 2003 Jan; 125(4):1041-55. PubMed ID: 12537504
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Product catalyzes the deamidation of D145N dehalogenase to produce the wild-type enzyme.
    Xiang H; Dong J; Carey PR; Dunaway-Mariano D
    Biochemistry; 1999 Mar; 38(13):4207-13. PubMed ID: 10194337
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor.
    Matsunami H; Okajima T; Hirota S; Yamaguchi H; Hori H; Kuroda S; Tanizawa K
    Biochemistry; 2004 Mar; 43(8):2178-87. PubMed ID: 14979714
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Topaquinone-dependent amine oxidases: identification of reaction intermediates by Raman spectroscopy.
    Nakamura N; Moënne-Loccoz P; Tanizawa K; Mure M; Suzuki S; Klinman JP; Sanders-Loehr J
    Biochemistry; 1997 Sep; 36(38):11479-86. PubMed ID: 9298968
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Role of the interactions between the active site base and the substrate Schiff base in amine oxidase catalysis. Evidence from structural and spectroscopic studies of the 2-hydrazinopyridine adduct of Escherichia coli amine oxidase.
    Mure M; Brown DE; Saysell C; Rogers MS; Wilmot CM; Kurtis CR; McPherson MJ; Phillips SE; Knowles PF; Dooley DM
    Biochemistry; 2005 Feb; 44(5):1568-82. PubMed ID: 15683241
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Catalytic mechanism of the quinoenzyme amine oxidase from Escherichia coli: exploring the reductive half-reaction.
    Wilmot CM; Murray JM; Alton G; Parsons MR; Convery MA; Blakeley V; Corner AS; Palcic MM; Knowles PF; McPherson MJ; Phillips SE
    Biochemistry; 1997 Feb; 36(7):1608-20. PubMed ID: 9048544
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Role of arginine 439 in substrate binding of 5-aminolevulinate synthase.
    Tan D; Harrison T; Hunter GA; Ferreira GC
    Biochemistry; 1998 Feb; 37(6):1478-84. PubMed ID: 9484217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Probing hydrogen-bonding interactions in the active site of medium-chain acyl-CoA dehydrogenase using Raman spectroscopy.
    Wu J; Bell AF; Luo L; Stephens AW; Stankovich MT; Tonge PJ
    Biochemistry; 2003 Oct; 42(40):11846-56. PubMed ID: 14529297
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Kinetic analysis of oxygen utilization during cofactor biogenesis in a copper-containing amine oxidase from yeast.
    Schwartz B; Dove JE; Klinman JP
    Biochemistry; 2000 Apr; 39(13):3699-707. PubMed ID: 10736169
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Copper amine oxidase from Hansenula polymorpha: the crystal structure determined at 2.4 A resolution reveals the active conformation.
    Li R; Klinman JP; Mathews FS
    Structure; 1998 Mar; 6(3):293-307. PubMed ID: 9551552
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Copper amine oxidase: heterologous expression, purification, and characterization of an active enzyme in Saccharomyces cerevisiae.
    Cai D; Klinman JP
    Biochemistry; 1994 Jun; 33(24):7647-53. PubMed ID: 8011631
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Exploring a channel to the active site of copper/topaquinone-containing phenylethylamine oxidase by chemical modification and site-specific mutagenesis.
    Matsuzaki R; Tanizawa K
    Biochemistry; 1998 Oct; 37(40):13947-57. PubMed ID: 9760229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.