BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

191 related articles for article (PubMed ID: 10387066)

  • 1. An unexpected role for the active site base in cofactor orientation and flexibility in the copper amine oxidase from Hansenula polymorpha.
    Plastino J; Green EL; Sanders-Loehr J; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8204-16. PubMed ID: 10387066
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship between conserved consensus site residues and the productive conformation for the TPQ cofactor in a copper-containing amine oxidase from yeast.
    Schwartz B; Green EL; Sanders-Loehr J; Klinman JP
    Biochemistry; 1998 Nov; 37(47):16591-600. PubMed ID: 9843426
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Role of a strictly conserved active site tyrosine in cofactor genesis in the copper amine oxidase from Hansenula polymorpha.
    DuBois JL; Klinman JP
    Biochemistry; 2006 Mar; 45(10):3178-88. PubMed ID: 16519513
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Mutation of a strictly conserved, active-site residue alters substrate specificity and cofactor biogenesis in a copper amine oxidase.
    Hevel JM; Mills SA; Klinman JP
    Biochemistry; 1999 Mar; 38(12):3683-93. PubMed ID: 10090756
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Relationship of stopped flow to steady state parameters in the dimeric copper amine oxidase from Hansenula polymorpha and the role of zinc in inhibiting activity at alternate copper-containing subunits.
    Takahashi K; Klinman JP
    Biochemistry; 2006 Apr; 45(14):4683-94. PubMed ID: 16584203
    [TBL] [Abstract][Full Text] [Related]  

  • 7. The active site base controls cofactor reactivity in Escherichia coli amine oxidase: x-ray crystallographic studies with mutational variants.
    Murray JM; Saysell CG; Wilmot CM; Tambyrajah WS; Jaeger J; Knowles PF; Phillips SE; McPherson MJ
    Biochemistry; 1999 Jun; 38(26):8217-27. PubMed ID: 10387067
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Partial conversion of Hansenula polymorpha amine oxidase into a "plant" amine oxidase: implications for copper chemistry and mechanism.
    Welford RW; Lam A; Mirica LM; Klinman JP
    Biochemistry; 2007 Sep; 46(38):10817-27. PubMed ID: 17760423
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Rates of oxygen and hydrogen exchange as indicators of TPQ cofactor orientation in amine oxidases.
    Green EL; Nakamura N; Dooley DM; Klinman JP; Sanders-Loehr J
    Biochemistry; 2002 Jan; 41(2):687-96. PubMed ID: 11781110
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Kinetic and structural studies on the catalytic role of the aspartic acid residue conserved in copper amine oxidase.
    Chiu YC; Okajima T; Murakawa T; Uchida M; Taki M; Hirota S; Kim M; Yamaguchi H; Kawano Y; Kamiya N; Kuroda S; Hayashi H; Yamamoto Y; Tanizawa K
    Biochemistry; 2006 Apr; 45(13):4105-20. PubMed ID: 16566584
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Mechanism-based inactivation of a yeast methylamine oxidase mutant: implications for the functional role of the consensus sequence surrounding topaquinone.
    Cai D; Dove J; Nakamura N; Sanders-Loehr J; Klinman JP
    Biochemistry; 1997 Sep; 36(38):11472-8. PubMed ID: 9298967
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Investigation of spectroscopic intermediates during copper-binding and TPQ formation in wild-type and active-site mutants of a copper-containing amine oxidase from yeast.
    Dove JE; Schwartz B; Williams NK; Klinman JP
    Biochemistry; 2000 Apr; 39(13):3690-8. PubMed ID: 10736168
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The nature of O2 reactivity leading to topa quinone in the copper amine oxidase from Hansenula polymorpha and its relationship to catalytic turnover.
    DuBois JL; Klinman JP
    Biochemistry; 2005 Aug; 44(34):11381-8. PubMed ID: 16114875
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Role of copper ion in bacterial copper amine oxidase: spectroscopic and crystallographic studies of metal-substituted enzymes.
    Kishishita S; Okajima T; Kim M; Yamaguchi H; Hirota S; Suzuki S; Kuroda S; Tanizawa K; Mure M
    J Am Chem Soc; 2003 Jan; 125(4):1041-55. PubMed ID: 12537504
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Product catalyzes the deamidation of D145N dehalogenase to produce the wild-type enzyme.
    Xiang H; Dong J; Carey PR; Dunaway-Mariano D
    Biochemistry; 1999 Mar; 38(13):4207-13. PubMed ID: 10194337
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism-based cofactor derivatization of a copper amine oxidase by a branched primary amine recruits the oxidase activity of the enzyme to turn inactivator into substrate.
    Qiao C; Ling KQ; Shepard EM; Dooley DM; Sayre LM
    J Am Chem Soc; 2006 May; 128(18):6206-19. PubMed ID: 16669691
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Chemical rescue of a site-specific mutant of bacterial copper amine oxidase for generation of the topa quinone cofactor.
    Matsunami H; Okajima T; Hirota S; Yamaguchi H; Hori H; Kuroda S; Tanizawa K
    Biochemistry; 2004 Mar; 43(8):2178-87. PubMed ID: 14979714
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Topaquinone-dependent amine oxidases: identification of reaction intermediates by Raman spectroscopy.
    Nakamura N; Moënne-Loccoz P; Tanizawa K; Mure M; Suzuki S; Klinman JP; Sanders-Loehr J
    Biochemistry; 1997 Sep; 36(38):11479-86. PubMed ID: 9298968
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Active site rearrangement of the 2-hydrazinopyridine adduct in Escherichia coli amine oxidase to an azo copper(II) chelate form: a key role for tyrosine 369 in controlling the mobility of the TPQ-2HP adduct.
    Mure M; Kurtis CR; Brown DE; Rogers MS; Tambyrajah WS; Saysell C; Wilmot CM; Phillips SE; Knowles PF; Dooley DM; McPherson MJ
    Biochemistry; 2005 Feb; 44(5):1583-94. PubMed ID: 15683242
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Role of the interactions between the active site base and the substrate Schiff base in amine oxidase catalysis. Evidence from structural and spectroscopic studies of the 2-hydrazinopyridine adduct of Escherichia coli amine oxidase.
    Mure M; Brown DE; Saysell C; Rogers MS; Wilmot CM; Kurtis CR; McPherson MJ; Phillips SE; Knowles PF; Dooley DM
    Biochemistry; 2005 Feb; 44(5):1568-82. PubMed ID: 15683241
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.