BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

807 related articles for article (PubMed ID: 10387105)

  • 1. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of O2 activation by cytochrome P450cam studied by isotope effects and transient state kinetics.
    Purdy MM; Koo LS; de Montellano PR; Klinman JP
    Biochemistry; 2006 Dec; 45(51):15793-806. PubMed ID: 17176102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen isotope effects on electron transfer to O2 probed using chemically modified flavins bound to glucose oxidase.
    Roth JP; Wincek R; Nodet G; Edmondson DE; McIntire WS; Klinman JP
    J Am Chem Soc; 2004 Nov; 126(46):15120-31. PubMed ID: 15548009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors.
    Leskovac V; Trivić S; Wohlfahrt G; Kandrac J; Pericin D
    Int J Biochem Cell Biol; 2005 Apr; 37(4):731-50. PubMed ID: 15694834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.
    Sucharitakul J; Wongnate T; Chaiyen P
    Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for superoxide radical production by a simple flavoprotein: glucose oxidase.
    al-Bekairi AM; Nagi MN; Shoeb HA; al-Sawaf HA
    Biochem Mol Biol Int; 1994 Sep; 34(2):233-8. PubMed ID: 7849633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of O2 to superoxide anion (O2.-) in water by heteropolytungstate cluster-anions.
    Geletii YV; Hill CL; Atalla RH; Weinstock IA
    J Am Chem Soc; 2006 Dec; 128(51):17033-42. PubMed ID: 17177455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of electron and proton transfer during the reaction of wild type and helix VI mutants of cytochrome bo3 with oxygen.
    Svensson-Ek M; Thomas JW; Gennis RB; Nilsson T; Brzezinski P
    Biochemistry; 1996 Oct; 35(42):13673-80. PubMed ID: 8885847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the role of the essential Asp251 in cytochrome p450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect.
    Vidakovic M; Sligar SG; Li H; Poulos TL
    Biochemistry; 1998 Jun; 37(26):9211-9. PubMed ID: 9649301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How do enzymes activate oxygen without inactivating themselves?
    Klinman JP
    Acc Chem Res; 2007 May; 40(5):325-33. PubMed ID: 17474709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of the reduction of dioxygen to water by cytochrome c oxidase. 1. The P(R) state is a pH-dependent mixture of three intermediates, A, P, and F.
    Van Eps N; Szundi I; Einarsdóttir O
    Biochemistry; 2003 May; 42(17):5065-73. PubMed ID: 12718550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetic behavior of chicken liver sulfite oxidase.
    Brody MS; Hille R
    Biochemistry; 1999 May; 38(20):6668-77. PubMed ID: 10350486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide reductase from Desulfoarculus baarsii: identification of protonation steps in the enzymatic mechanism.
    Nivière V; Asso M; Weill CO; Lombard M; Guigliarelli B; Favaudon V; Houée-Levin C
    Biochemistry; 2004 Jan; 43(3):808-18. PubMed ID: 14730986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate-limiting steps in oxidations catalyzed by rabbit cytochrome P450 1A2.
    Guengerich FP; Krauser JA; Johnson WW
    Biochemistry; 2004 Aug; 43(33):10775-88. PubMed ID: 15311939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.