These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

807 related articles for article (PubMed ID: 10387105)

  • 1. Nature of oxygen activation in glucose oxidase from Aspergillus niger: the importance of electrostatic stabilization in superoxide formation.
    Su Q; Klinman JP
    Biochemistry; 1999 Jun; 38(26):8572-81. PubMed ID: 10387105
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Probing the mechanism of proton coupled electron transfer to dioxygen: the oxidative half-reaction of bovine serum amine oxidase.
    Su Q; Klinman JP
    Biochemistry; 1998 Sep; 37(36):12513-25. PubMed ID: 9730824
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Kinetic isotope effects as probes of the mechanism of galactose oxidase.
    Whittaker MM; Ballou DP; Whittaker JW
    Biochemistry; 1998 Jun; 37(23):8426-36. PubMed ID: 9622494
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanism of O2 activation by cytochrome P450cam studied by isotope effects and transient state kinetics.
    Purdy MM; Koo LS; de Montellano PR; Klinman JP
    Biochemistry; 2006 Dec; 45(51):15793-806. PubMed ID: 17176102
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Oxygen isotope effects on electron transfer to O2 probed using chemically modified flavins bound to glucose oxidase.
    Roth JP; Wincek R; Nodet G; Edmondson DE; McIntire WS; Klinman JP
    J Am Chem Soc; 2004 Nov; 126(46):15120-31. PubMed ID: 15548009
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Glucose oxidase from Aspergillus niger: the mechanism of action with molecular oxygen, quinones, and one-electron acceptors.
    Leskovac V; Trivić S; Wohlfahrt G; Kandrac J; Pericin D
    Int J Biochem Cell Biol; 2005 Apr; 37(4):731-50. PubMed ID: 15694834
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic isotope effects on the noncovalent flavin mutant protein of pyranose 2-oxidase reveal insights into the flavin reduction mechanism.
    Sucharitakul J; Wongnate T; Chaiyen P
    Biochemistry; 2010 May; 49(17):3753-65. PubMed ID: 20359206
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Evidence for superoxide radical production by a simple flavoprotein: glucose oxidase.
    al-Bekairi AM; Nagi MN; Shoeb HA; al-Sawaf HA
    Biochem Mol Biol Int; 1994 Sep; 34(2):233-8. PubMed ID: 7849633
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Reduction of O2 to superoxide anion (O2.-) in water by heteropolytungstate cluster-anions.
    Geletii YV; Hill CL; Atalla RH; Weinstock IA
    J Am Chem Soc; 2006 Dec; 128(51):17033-42. PubMed ID: 17177455
    [TBL] [Abstract][Full Text] [Related]  

  • 10. On the catalytic role of the conserved active site residue His466 of choline oxidase.
    Ghanem M; Gadda G
    Biochemistry; 2005 Jan; 44(3):893-904. PubMed ID: 15654745
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Kinetics of electron and proton transfer during the reaction of wild type and helix VI mutants of cytochrome bo3 with oxygen.
    Svensson-Ek M; Thomas JW; Gennis RB; Nilsson T; Brzezinski P
    Biochemistry; 1996 Oct; 35(42):13673-80. PubMed ID: 8885847
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Dioxygenases without requirement for cofactors and their chemical model reaction: compulsory order ternary complex mechanism of 1H-3-hydroxy-4-oxoquinaldine 2,4-dioxygenase involving general base catalysis by histidine 251 and single-electron oxidation of the substrate dianion.
    Frerichs-Deeken U; Ranguelova K; Kappl R; Hüttermann J; Fetzner S
    Biochemistry; 2004 Nov; 43(45):14485-99. PubMed ID: 15533053
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Understanding the role of the essential Asp251 in cytochrome p450cam using site-directed mutagenesis, crystallography, and kinetic solvent isotope effect.
    Vidakovic M; Sligar SG; Li H; Poulos TL
    Biochemistry; 1998 Jun; 37(26):9211-9. PubMed ID: 9649301
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Chemical mechanism of a cysteine protease, cathepsin C, as revealed by integration of both steady-state and pre-steady-state solvent kinetic isotope effects.
    Schneck JL; Villa JP; McDevitt P; McQueney MS; Thrall SH; Meek TD
    Biochemistry; 2008 Aug; 47(33):8697-710. PubMed ID: 18656960
    [TBL] [Abstract][Full Text] [Related]  

  • 15. How do enzymes activate oxygen without inactivating themselves?
    Klinman JP
    Acc Chem Res; 2007 May; 40(5):325-33. PubMed ID: 17474709
    [TBL] [Abstract][Full Text] [Related]  

  • 16. pH dependence of the reduction of dioxygen to water by cytochrome c oxidase. 1. The P(R) state is a pH-dependent mixture of three intermediates, A, P, and F.
    Van Eps N; Szundi I; Einarsdóttir O
    Biochemistry; 2003 May; 42(17):5065-73. PubMed ID: 12718550
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The kinetic behavior of chicken liver sulfite oxidase.
    Brody MS; Hille R
    Biochemistry; 1999 May; 38(20):6668-77. PubMed ID: 10350486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Superoxide reductase from Desulfoarculus baarsii: identification of protonation steps in the enzymatic mechanism.
    Nivière V; Asso M; Weill CO; Lombard M; Guigliarelli B; Favaudon V; Houée-Levin C
    Biochemistry; 2004 Jan; 43(3):808-18. PubMed ID: 14730986
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Rate-limiting steps in oxidations catalyzed by rabbit cytochrome P450 1A2.
    Guengerich FP; Krauser JA; Johnson WW
    Biochemistry; 2004 Aug; 43(33):10775-88. PubMed ID: 15311939
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Synthetic models of the active site of cytochrome C oxidase: influence of tridentate or tetradentate copper chelates bearing a His--Tyr linkage mimic on dioxygen adduct formation by heme/Cu complexes.
    Liu JG; Naruta Y; Tani F
    Chemistry; 2007; 13(22):6365-78. PubMed ID: 17503416
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 41.