These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

121 related articles for article (PubMed ID: 10388559)

  • 1. Time-resolved equatorial X-ray diffraction studies of skinned muscle fibres during stretch and release.
    Hoskins BK; Ashley CC; Pelc R; Rapp G; Griffiths PJ
    J Mol Biol; 1999 Jul; 290(1):77-97. PubMed ID: 10388559
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Submillisecond changes in myosin lattice spacing resulting from rapid length changes.
    Ashley CC; Bagni MA; Cecchi G; Griffiths PJ; Rapp G
    J Mol Biol; 1999 Jan; 285(1):431-40. PubMed ID: 9878417
    [TBL] [Abstract][Full Text] [Related]  

  • 3. [Relation between the intensity of low-angle equatorial reflections of x-ray diffraction patterns of frog skeletal muscle and sarcomere length].
    Savel'ev VB
    Biofizika; 1985; 30(5):873-7. PubMed ID: 3876850
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Effects of the number of actin-bound S1 and axial force on X-ray patterns of intact skeletal muscle.
    Griffiths PJ; Bagni MA; Colombini B; Amenitsch H; Bernstorff S; Funari S; Ashley CC; Cecchi G
    Biophys J; 2006 Feb; 90(3):975-84. PubMed ID: 16272435
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Muscle force is generated by myosin heads stereospecifically attached to actin.
    Bershitsky SY; Tsaturyan AK; Bershitskaya ON; Mashanov GI; Brown P; Burns R; Ferenczi MA
    Nature; 1997 Jul; 388(6638):186-90. PubMed ID: 9217160
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Freeze-fracture studies on the cross-bridge angle distribution at various states and the thin filament stiffness in single skinned frog muscle fibers.
    Suzuki S; Oshimi Y; Sugi H
    J Electron Microsc (Tokyo); 1993 Apr; 42(2):107-16. PubMed ID: 8350022
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Structural changes during contraction in vertebrate skeletal muscle as studied by time-resolved X-ray diffraction technique.
    Sugi H; Tanaka H; Wakabayashi K; Kobayashi T; Iwamoto H; Hamanaka T; Mitsui T; Amemiya Y
    Biomed Biochim Acta; 1986; 45(1-2):S15-22. PubMed ID: 3485970
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Time-resolved X-ray diffraction by skinned skeletal muscle fibers during activation and shortening.
    Hoskins BK; Ashley CC; Rapp G; Griffiths PJ
    Biophys J; 2001 Jan; 80(1):398-414. PubMed ID: 11159411
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The stiffness of frog skinned muscle fibres at altered lateral filament spacing.
    Goldman YE; Simmons RM
    J Physiol; 1986 Sep; 378():175-94. PubMed ID: 3491904
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Changes in the lateral filament spacing of skinned muscle fibres when cross-bridges attach.
    Matsubara I; Goldman YE; Simmons RM
    J Mol Biol; 1984 Feb; 173(1):15-33. PubMed ID: 6608003
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Detachment of low-force bridges contributes to the rapid tension transients of skinned rabbit skeletal muscle fibres.
    Seow CY; Shroff SG; Ford LE
    J Physiol; 1997 May; 501 ( Pt 1)(Pt 1):149-64. PubMed ID: 9175000
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Lattice swelling with the selective digestion of elastic components in single-skinned fibers of frog muscle.
    Higuchi H
    Biophys J; 1987 Jul; 52(1):29-32. PubMed ID: 3496923
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structural responses to the photolytic release of ATP in frog muscle fibres, observed by time-resolved X-ray diffraction.
    Tsaturyan AK; Bershitsky SY; Burns R; He ZH; Ferenczi MA
    J Physiol; 1999 Nov; 520 Pt 3(Pt 3):681-96. PubMed ID: 10545136
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of pressure on equatorial x-ray fiber diffraction from skeletal muscle fibers.
    Knight PJ; Fortune NS; Geeves MA
    Biophys J; 1993 Aug; 65(2):814-22. PubMed ID: 8218906
    [TBL] [Abstract][Full Text] [Related]  

  • 15. State-dependent radial elasticity of attached cross-bridges in single skinned fibres of rabbit psoas muscle.
    Xu S; Brenner B; Yu LC
    J Physiol; 1993 Feb; 461():283-99. PubMed ID: 16993186
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Detection of radial crossbridge force by lattice spacing changes in intact single muscle fibers.
    Cecchi G; Bagni MA; Griffiths PJ; Ashley CC; Maeda Y
    Science; 1990 Dec; 250(4986):1409-11. PubMed ID: 2255911
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Time-resolved X-ray diffraction studies on the effect of slow length changes on tetanized frog skeletal muscle.
    Amemiya Y; Iwamoto H; Kobayashi T; Sugi H; Tanaka H; Wakabayashi K
    J Physiol; 1988 Dec; 407():231-41. PubMed ID: 3267188
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Characterization of radial force and radial stiffness in Ca(2+)-activated skinned fibres of the rabbit psoas muscle.
    Brenner B; Yu LC
    J Physiol; 1991 Sep; 441():703-18. PubMed ID: 1816390
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A cross-bridge mechanism can explain the thixotropic short-range elastic component of relaxed frog skeletal muscle.
    Campbell KS; Lakie M
    J Physiol; 1998 Aug; 510 ( Pt 3)(Pt 3):941-62. PubMed ID: 9660904
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Small-Angle X-ray Diffraction of Muscle Using Undulator Radiation from the Tristan Main Ring at KEK.
    Yagi N; Wakabayashi K; Iwamoto H; Horiuti K; Kojima I; Irving TC; Takezawa Y; Sugimoto Y; Iwamoto S; Majima T; Amemiya Y; Ando M
    J Synchrotron Radiat; 1996 Nov; 3(Pt 6):305-12. PubMed ID: 16702697
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.