These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
118 related articles for article (PubMed ID: 10388559)
21. [Direct proof of the existence of Ca2+-induced structural changes in miosin-containing thick filaments of vertebrate skeletal muscles]. Lednev VV; Srebnitskaia LK; Kornev AN; Malinchik SB Biofizika; 1982; 27(3):493-7. PubMed ID: 6980017 [TBL] [Abstract][Full Text] [Related]
22. Lattice spacing changes accompanying isometric tension development in intact single muscle fibers. Bagni MA; Cecchi G; Griffiths PJ; Maéda Y; Rapp G; Ashley CC Biophys J; 1994 Nov; 67(5):1965-75. PubMed ID: 7858133 [TBL] [Abstract][Full Text] [Related]
23. Neutron diffraction measurements of skeletal muscle using the contrast variation technique: analysis of the equatorial diffraction patterns. Fujiwara S; Takezawa Y; Sugimoto Y; Wakabayashi K J Struct Biol; 2009 Jul; 167(1):25-35. PubMed ID: 19351558 [TBL] [Abstract][Full Text] [Related]
24. Filament lattice of frog striated muscle. Radial forces, lattice stability, and filament compression in the A-band of relaxed and rigor muscle. Millman BM; Irving TC Biophys J; 1988 Sep; 54(3):437-47. PubMed ID: 3264728 [TBL] [Abstract][Full Text] [Related]
25. Force enhancement in single skeletal muscle fibres on the ascending limb of the force-length relationship. Peterson DR; Rassier DE; Herzog W J Exp Biol; 2004 Jul; 207(Pt 16):2787-91. PubMed ID: 15235007 [TBL] [Abstract][Full Text] [Related]
26. Mechanical and structural properties underlying contraction of skeletal muscle fibers after partial 1-ethyl-3-[3-dimethylamino)propyl]carbodiimide cross-linking. Bershitsky S; Tsaturyan A; Bershitskaya O; Mashanov G; Brown P; Webb M; Ferenczi MA Biophys J; 1996 Sep; 71(3):1462-74. PubMed ID: 8874020 [TBL] [Abstract][Full Text] [Related]
27. A combined mechanical and X-ray diffraction study of stretch potentiation in single frog muscle fibres. Linari M; Lucii L; Reconditi M; Casoni ME; Amenitsch H; Bernstorff S; Piazzesi G; Lombardi V J Physiol; 2000 Aug; 526 Pt 3(Pt 3):589-96. PubMed ID: 10922010 [TBL] [Abstract][Full Text] [Related]
28. Z/I and A-band lattice spacings in frog skeletal muscle: effects of contraction and osmolarity. Irving TC; Li Q; Williams BA; Millman BM J Muscle Res Cell Motil; 1998 Oct; 19(7):811-23. PubMed ID: 9836152 [TBL] [Abstract][Full Text] [Related]
29. Effect of Active Lengthening and Shortening on Small-Angle X-ray Reflections in Skinned Skeletal Muscle Fibres. Joumaa V; Smith IC; Fukutani A; Leonard TR; Ma W; Mijailovich SM; Irving TC; Herzog W Int J Mol Sci; 2021 Aug; 22(16):. PubMed ID: 34445232 [TBL] [Abstract][Full Text] [Related]
30. 3D structure of relaxed fish muscle myosin filaments by single particle analysis. Al-Khayat HA; Morris EP; Kensler RW; Squire JM J Struct Biol; 2006 Aug; 155(2):202-17. PubMed ID: 16731006 [TBL] [Abstract][Full Text] [Related]
31. Cross-bridge stiffness in Ca(2+)-activated skinned single muscle fibres. Jung DW; Blangé T; de Graaf H; Treijtel BW Pflugers Arch; 1992 Apr; 420(5-6):434-45. PubMed ID: 1377378 [TBL] [Abstract][Full Text] [Related]
32. Response of equatorial x-ray reflections and stiffness to altered sarcomere length and myofilament lattice spacing in relaxed skinned cardiac muscle. Martyn DA; Adhikari BB; Regnier M; Gu J; Xu S; Yu LC Biophys J; 2004 Feb; 86(2):1002-11. PubMed ID: 14747335 [TBL] [Abstract][Full Text] [Related]
33. Distribution of mass in relaxed frog skeletal muscle and its redistribution upon activation. Yu LC; Steven AC; Naylor GR; Gamble RC; Podolsky RJ Biophys J; 1985 Mar; 47(3):311-21. PubMed ID: 3872138 [TBL] [Abstract][Full Text] [Related]
34. [Study of the mechanics and small-angle equatorial x-ray pattern of the frog skeletal muscle during transition and rigor at different temperatures]. Savel'ev VB Biofizika; 1986; 31(6):1027-32. PubMed ID: 3492220 [TBL] [Abstract][Full Text] [Related]
36. Lateral filamentary spacing in chemically skinned murine muscles during contraction. Matsubara I; Umazume Y; Yagi N J Physiol; 1985 Mar; 360():135-48. PubMed ID: 2580968 [TBL] [Abstract][Full Text] [Related]
37. High frequency characteristics of elasticity of skeletal muscle fibres kept in relaxed and rigor state. De Winkel ME; Blangé T; Treijtel BW J Muscle Res Cell Motil; 1994 Apr; 15(2):130-44. PubMed ID: 8051287 [TBL] [Abstract][Full Text] [Related]
38. Modulation of passive force in single skeletal muscle fibres. Rassier DE; Lee EJ; Herzog W Biol Lett; 2005 Sep; 1(3):342-5. PubMed ID: 17148202 [TBL] [Abstract][Full Text] [Related]
39. Cross-bridge properties in the rigor state. Podolsky RJ; Naylor GR; Arata T Soc Gen Physiol Ser; 1982; 37():79-89. PubMed ID: 7146957 [TBL] [Abstract][Full Text] [Related]