These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 10388585)

  • 41. Biofilm development in a membrane-aerated biofilm reactor: effect of flow velocity on performance.
    Casey E; Glennon B; Hamer G
    Biotechnol Bioeng; 2000 Feb; 67(4):476-86. PubMed ID: 10620763
    [TBL] [Abstract][Full Text] [Related]  

  • 42. [Myocardial microcirculation in humans--new approaches using MRI].
    Wacker CM; Bauer WR
    Herz; 2003 Mar; 28(2):74-81. PubMed ID: 12669220
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Agarose stabilization of fragile biofilms for quantitative structure analysis.
    Pittman KJ; Robbins CM; Osborn JL; Stubblefield BA; Gilbert ES
    J Microbiol Methods; 2010 May; 81(2):101-7. PubMed ID: 20152866
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Magnetic resonance microscopy of biofilm structure and impact on transport in a capillary bioreactor.
    Seymour JD; Codd SL; Gjersing EL; Stewart PS
    J Magn Reson; 2004 Apr; 167(2):322-7. PubMed ID: 15040989
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Quantitative characterization of food products by two-dimensional D-T2 and T1-T2 distribution functions in a static gradient.
    Hürlimann MD; Burcaw L; Song YQ
    J Colloid Interface Sci; 2006 May; 297(1):303-11. PubMed ID: 16300777
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Superstatistics model for T₂ distribution in NMR experiments on porous media.
    Correia MD; Souza AM; Sinnecker JP; Sarthour RS; Santos BC; Trevizan W; Oliveira IS
    J Magn Reson; 2014 Jul; 244():12-7. PubMed ID: 24819425
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Effect of substrate concentration on dual-species biofilm population densities of Klebsiella oxytoca and Burkholderia cepacia in porous media.
    Komlos J; Cunningham AB; Camper AK; Sharp RR
    Biotechnol Bioeng; 2006 Feb; 93(3):434-42. PubMed ID: 16315326
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Autohydrogenotrophic denitrifying microbial community in a glass beads biofilm reactor.
    Park HI; Choi YJ; Pak D
    Biotechnol Lett; 2005 Jul; 27(13):949-53. PubMed ID: 16091891
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Investigations of structure and metabolism within Shewanella oneidensis MR-1 biofilms.
    McLean JS; Majors PD; Reardon CL; Bilskis CL; Reed SB; Romine MF; Fredrickson JK
    J Microbiol Methods; 2008 Jul; 74(1):47-56. PubMed ID: 18448180
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Real time monitoring of biofilm development under flow conditions in porous media.
    Bozorg A; Gates ID; Sen A
    Biofouling; 2012; 28(9):937-51. PubMed ID: 22963147
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and shear strength of microbial biofilms as determined with confocal laser scanning microscopy and fluid dynamic gauging using a novel rotating disc biofilm reactor.
    Möhle RB; Langemann T; Haesner M; Augustin W; Scholl S; Neu TR; Hempel DC; Horn H
    Biotechnol Bioeng; 2007 Nov; 98(4):747-55. PubMed ID: 17421046
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Histomorphometry of the embryonic avian growth plate by proton nuclear magnetic resonance microscopy.
    Potter K; Landis WJ; Spencer RG
    J Bone Miner Res; 2001 Jun; 16(6):1092-100. PubMed ID: 11393786
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Quadrupolar relaxation of hyperpolarized krypton-83 as a probe for surfaces.
    Stupic KF; Cleveland ZI; Pavlovskaya GE; Meersmann T
    Solid State Nucl Magn Reson; 2006 Feb; 29(1-3):79-84. PubMed ID: 16202568
    [TBL] [Abstract][Full Text] [Related]  

  • 54. NMR signal analysis to characterize solid, aqueous, and lipid phases in baked cakes.
    Le Grand F; Cambert M; Mariette F
    J Agric Food Chem; 2007 Dec; 55(26):10947-52. PubMed ID: 18044835
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Towards optimum permeability reduction in porous media using biofilm growth simulations.
    Pintelon TR; Graf von der Schulenburg DA; Johns ML
    Biotechnol Bioeng; 2009 Jul; 103(4):767-79. PubMed ID: 19309753
    [TBL] [Abstract][Full Text] [Related]  

  • 56. 1H NMR spin-spin relaxation and imaging in porous systems: an application to the morphological study of white portland cement during hydration in the presence of organics.
    Gussoni M; Greco F; Bonazzi F; Vezzoli A; Botta D; Dotelli G; Natali Sora I; Pelosato R; Zetta L
    Magn Reson Imaging; 2004 Jul; 22(6):877-89. PubMed ID: 15234458
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Enhanced (13)C PFG NMR for the study of hydrodynamic dispersion in porous media.
    Akpa BS; Holland DJ; Sederman AJ; Johns ML; Gladden LF
    J Magn Reson; 2007 May; 186(1):160-5. PubMed ID: 17320440
    [TBL] [Abstract][Full Text] [Related]  

  • 58. In Situ Detection of Subsurface Biofilm Using Low-Field NMR: A Field Study.
    Kirkland CM; Herrling MP; Hiebert R; Bender AT; Grunewald E; Walsh DO; Codd SL
    Environ Sci Technol; 2015 Sep; 49(18):11045-52. PubMed ID: 26308099
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Influence of growth history on sloughing and erosion from biofilms.
    Telgmann U; Horn H; Morgenroth E
    Water Res; 2004 Oct; 38(17):3671-84. PubMed ID: 15350418
    [TBL] [Abstract][Full Text] [Related]  

  • 60. A simple optode based method for imaging O2 distribution and dynamics in tap water biofilms.
    Staal M; Prest EI; Vrouwenvelder JS; Rickelt LF; Kühl M
    Water Res; 2011 Oct; 45(16):5027-37. PubMed ID: 21803395
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.