BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

176 related articles for article (PubMed ID: 10388663)

  • 21. Efficient concerted integration of retrovirus-like DNA in vitro by avian myeloblastosis virus integrase.
    Vora AC; McCord M; Fitzgerald ML; Inman RB; Grandgenett DP
    Nucleic Acids Res; 1994 Oct; 22(21):4454-61. PubMed ID: 7971276
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Paired DNA three-way junctions as scaffolds for assembling integrase complexes.
    Johnson EP; Bushman FD
    Virology; 2001 Aug; 286(2):304-16. PubMed ID: 11485398
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Retroviral DNA integration--mechanism and consequences.
    Lewinski MK; Bushman FD
    Adv Genet; 2005; 55():147-81. PubMed ID: 16291214
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Removal of 3'-OH-terminal nucleotides from blunt-ended long terminal repeat termini by the avian retrovirus integration protein.
    Vora AC; Fitzgerald ML; Grandgenett DP
    J Virol; 1990 Nov; 64(11):5656-9. PubMed ID: 2214031
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Avian sarcoma and leukemia virus (ASLV) integration in vitro: mutation or deletion of integrase (IN) recognition sequences does not prevent but only reduces the efficiency and accuracy of DNA integration.
    Moreau K; Charmetant J; Gallay K; Faure C; Verdier G; Ronfort C
    Virology; 2009 Sep; 392(1):94-102. PubMed ID: 19638332
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Target-sequence preferences of HIV-1 integration complexes in vitro.
    Bor YC; Miller MD; Bushman FD; Orgel LE
    Virology; 1996 Aug; 222(1):283-8. PubMed ID: 8806511
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Mutational analyses of the core domain of Avian Leukemia and Sarcoma Viruses integrase: critical residues for concerted integration and multimerization.
    Moreau K; Faure C; Violot S; Gouet P; Verdier G; Ronfort C
    Virology; 2004 Jan; 318(2):566-81. PubMed ID: 14972525
    [TBL] [Abstract][Full Text] [Related]  

  • 28. A large nucleoprotein assembly at the ends of the viral DNA mediates retroviral DNA integration.
    Wei SQ; Mizuuchi K; Craigie R
    EMBO J; 1997 Dec; 16(24):7511-20. PubMed ID: 9405379
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Concerted integration of linear retroviral DNA by the avian sarcoma virus integrase in vitro: dependence on both long terminal repeat termini.
    Aiyar A; Hindmarsh P; Skalka AM; Leis J
    J Virol; 1996 Jun; 70(6):3571-80. PubMed ID: 8648691
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Assembly and catalysis of concerted two-end integration events by Moloney murine leukemia virus integrase.
    Yang F; Roth MJ
    J Virol; 2001 Oct; 75(20):9561-70. PubMed ID: 11559787
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Integration site selection by retroviruses.
    Cereseto A; Giacca M
    AIDS Rev; 2004; 6(1):13-21. PubMed ID: 15168737
    [TBL] [Abstract][Full Text] [Related]  

  • 32. In vivo events of retroviral long terminal repeat integration into Marek's disease virus in commercial poultry: detection of chimeric molecules as a marker.
    Davidson I; Borenshtain R
    Avian Dis; 2001; 45(1):102-21. PubMed ID: 11332471
    [TBL] [Abstract][Full Text] [Related]  

  • 33. HNF-3beta is a critical factor for the expression of the Jaagsiekte sheep retrovirus long terminal repeat in type II pneumocytes but not in Clara cells.
    McGee-Estrada K; Palmarini M; Fan H
    Virology; 2002 Jan; 292(1):87-97. PubMed ID: 11878911
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Transcriptional regulation of GSDML gene by antisense-oriented HERV-H LTR element.
    Huh JW; Kim DS; Kang DW; Ha HS; Ahn K; Noh YN; Min DS; Chang KT; Kim HS
    Arch Virol; 2008; 153(6):1201-5. PubMed ID: 18478180
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Base-pair substitutions in avian sarcoma virus U5 and U3 long terminal repeat sequences alter the process of DNA integration in vitro.
    Hindmarsh P; Johnson M; Reeves R; Leis J
    J Virol; 2001 Feb; 75(3):1132-41. PubMed ID: 11152486
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Host site selection for concerted integration by human immunodeficiency virus type-1 virions in vitro.
    Goodarzi G; Chiu R; Brackmann K; Kohn K; Pommier Y; Grandgenett DP
    Virology; 1997 May; 231(2):210-7. PubMed ID: 9168883
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Suboptimal enhancer sequences are required for efficient bovine leukemia virus propagation in vivo: implications for viral latency.
    Merezak C; Pierreux C; Adam E; Lemaigre F; Rousseau GG; Calomme C; Van Lint C; Christophe D; Kerkhofs P; Burny A; Kettmann R; Willems L
    J Virol; 2001 Aug; 75(15):6977-88. PubMed ID: 11435578
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Structural Insights on Retroviral DNA Integration: Learning from Foamy Viruses.
    Lee GE; Mauro E; Parissi V; Shin CG; Lesbats P
    Viruses; 2019 Aug; 11(9):. PubMed ID: 31443391
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Changes to the HIV long terminal repeat and to HIV integrase differentially impact HIV integrase assembly, activity, and the binding of strand transfer inhibitors.
    Dicker IB; Samanta HK; Li Z; Hong Y; Tian Y; Banville J; Remillard RR; Walker MA; Langley DR; Krystal M
    J Biol Chem; 2007 Oct; 282(43):31186-96. PubMed ID: 17715137
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Characterization of a replication-defective human immunodeficiency virus type 1 att site mutant that is blocked after the 3' processing step of retroviral integration.
    Chen H; Engelman A
    J Virol; 2000 Sep; 74(17):8188-93. PubMed ID: 10933731
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 9.