BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

139 related articles for article (PubMed ID: 10388774)

  • 1. Molecular dynamics of microbial lipases as determined from their intrinsic tryptophan fluorescence.
    Graupner M; Haalck L; Spener F; Lindner H; Glatter O; Paltauf F; Hermetter A
    Biophys J; 1999 Jul; 77(1):493-504. PubMed ID: 10388774
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Fluorescent inhibitors reveal solvent-dependent micropolarity in the lipid binding sites of lipases.
    Oskolkova OV; Hermetter A
    Biochim Biophys Acta; 2002 May; 1597(1):60-6. PubMed ID: 12009403
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor.
    Kim KK; Song HK; Shin DH; Hwang KY; Suh SW
    Structure; 1997 Feb; 5(2):173-85. PubMed ID: 9032073
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Inhibition of lipases from Chromobacterium viscosum and Rhizopus oryzae by tetrahydrolipstatin.
    Potthoff AP; Haalck L; Spener F
    Biochim Biophys Acta; 1998 Jan; 1389(2):123-31. PubMed ID: 9461253
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Dynamic fluorescence spectroscopy on single tryptophan mutants of EII(mtl) in detergent micelles. Effects of substrate binding and phosphorylation on the fluorescence and anisotropy decay.
    Dijkstra DS; Broos J; Visser AJ; van Hoek A; Robillard GT
    Biochemistry; 1997 Apr; 36(16):4860-6. PubMed ID: 9125506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The open conformation of a Pseudomonas lipase.
    Schrag JD; Li Y; Cygler M; Lang D; Burgdorf T; Hecht HJ; Schmid R; Schomburg D; Rydel TJ; Oliver JD; Strickland LC; Dunaway CM; Larson SB; Day J; McPherson A
    Structure; 1997 Feb; 5(2):187-202. PubMed ID: 9032074
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Inversion of lipase stereospecificity for fluorogenic alkyldiacyl glycerols. Effect of substrate solubilization.
    Zandonella G; Haalck L; Spener F; Faber K; Paltauf F; Hermetter A
    Eur J Biochem; 1995 Jul; 231(1):50-5. PubMed ID: 7628484
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effects of i-propanol on the structural dynamics of Thermomyces lanuginosa lipase revealed by tryptophan fluorescence.
    Zhu K; Jutila A; Tuominen EK; Kinnunen PK
    Protein Sci; 2001 Feb; 10(2):339-51. PubMed ID: 11266620
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Hydration-aggregation pretreatment for drastically improving esterification activity of commercial lipases in non-aqueous media.
    Katayama M; Kuroiwa T; Suzuno K; Igusa A; Matsui T; Kanazawa A
    Enzyme Microb Technol; 2017 Oct; 105():30-37. PubMed ID: 28756858
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The surfactant-induced conformational and activity alterations in Rhizopus niveus lipase.
    Alam P; Rabbani G; Badr G; Badr BM; Khan RH
    Cell Biochem Biophys; 2015 Mar; 71(2):1199-206. PubMed ID: 25424356
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Hydrolysis and esterification of acylglycerols and analogs in aqueous medium catalyzed by microbial lipases.
    Kovac A; Stadler P; Haalck L; Spener F; Paltauf F
    Biochim Biophys Acta; 1996 May; 1301(1-2):57-66. PubMed ID: 8652651
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation, inhibition, and destabilization of Thermomyces lanuginosus lipase by detergents.
    Mogensen JE; Sehgal P; Otzen DE
    Biochemistry; 2005 Feb; 44(5):1719-30. PubMed ID: 15683256
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Crystal structure of a bacterial lipase from Chromobacterium viscosum ATCC 6918 refined at 1.6 angstroms resolution.
    Lang D; Hofmann B; Haalck L; Hecht HJ; Spener F; Schmid RD; Schomburg D
    J Mol Biol; 1996 Jun; 259(4):704-17. PubMed ID: 8683577
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Inhibition of microbial lipases with stereoisomeric triradylglycerol analog phosphonates.
    Stadler P; Zandonella G; Haalck L; Spener F; Hermetter A; Paltauf F
    Biochim Biophys Acta; 1996 Dec; 1304(3):229-44. PubMed ID: 8982269
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Stability of porcine and microbial lipases to conditions that approximate the proventriculus of young birds.
    Kermanshahi H; Maenz DD; Classen HL
    Poult Sci; 1998 Nov; 77(11):1665-70. PubMed ID: 9835341
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Gene synthesis, expression in E. coli, and in vitro refolding of Pseudomonas sp. KWI 56 and Chromobacterium viscosum lipases and their chaperones.
    Traub PC; Schmidt-Dannert C; Schmitt J; Schmid RD
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):198-204. PubMed ID: 11330714
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipase from Chromobacterium viscosum: biochemical characterization indicating homology to the lipase from Pseudomonas glumae.
    Taipa MA; Liebeton K; Costa JV; Cabral JM; Jaeger KE
    Biochim Biophys Acta; 1995 Jun; 1256(3):396-402. PubMed ID: 7786905
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A spectroscopic analysis of thermal stability of the Chromobacterium viscosum lipase.
    Melo EP; Taipa MA; Castellar MR; Costa SM; Cabral JM
    Biophys Chem; 2000 Oct; 87(2-3):111-20. PubMed ID: 11099174
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoselectivity of microbial lipases. The substitution at position sn-2 of triacylglycerol analogs influences the stereoselectivity of different microbial lipases.
    Stadler P; Kovac A; Haalck L; Spener F; Paltauf F
    Eur J Biochem; 1995 Jan; 227(1-2):335-43. PubMed ID: 7851405
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Tryptophan octyl ester in detergent micelles of dodecylmaltoside: fluorescence properties and quenching by brominated detergent analogs.
    de Foresta B; Gallay J; Sopkova J; Champeil P; Vincent M
    Biophys J; 1999 Dec; 77(6):3071-84. PubMed ID: 10585929
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.