These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

103 related articles for article (PubMed ID: 10388832)

  • 1. Double-strand break-induced recombination between ectopic homologous sequences in somatic plant cells.
    Puchta H
    Genetics; 1999 Jul; 152(3):1173-81. PubMed ID: 10388832
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Induction of recombination between diverged sequences in a mammalian genome by a double-strand break.
    Bhattacharjee V; Lin Y; Waldman BC; Waldman AS
    Cell Mol Life Sci; 2014 Jun; 71(12):2359-71. PubMed ID: 24257896
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Analysis of gene targeting and intrachromosomal homologous recombination stimulated by genomic double-strand breaks in mouse embryonic stem cells.
    Donoho G; Jasin M; Berg P
    Mol Cell Biol; 1998 Jul; 18(7):4070-8. PubMed ID: 9632791
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Testing predictions of the double-strand break repair model relating to crossing over in Mammalian cells.
    Birmingham EC; Lee SA; McCulloch RD; Baker MD
    Genetics; 2004 Nov; 168(3):1539-55. PubMed ID: 15579705
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Homologous Recombination-Experimental Systems, Analysis, and Significance.
    Kuzminov A
    EcoSal Plus; 2011 Dec; 4(2):. PubMed ID: 26442506
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A DNA circuit that records molecular events.
    Zhang M; Yancey C; Zhang C; Wang J; Ma Q; Yang L; Schulman R; Han D; Tan W
    Sci Adv; 2024 Apr; 10(14):eadn3329. PubMed ID: 38578999
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Achieving fidelity in homologous recombination despite extreme complexity: informed decisions by molecular profiling.
    Rambo RP; Williams GJ; Tainer JA
    Mol Cell; 2010 Nov; 40(3):347-8. PubMed ID: 21070960
    [TBL] [Abstract][Full Text] [Related]  

  • 8. A High-Quality Assembly and Comparative Analysis of the Mitogenome of
    Gong J; Yang J; Lai Y; Pan T; She W
    Genes (Basel); 2024 Apr; 15(4):. PubMed ID: 38674448
    [TBL] [Abstract][Full Text] [Related]  

  • 9. CRISPR/Cas9-induced DNA breaks trigger crossover, chromosomal loss, and chromothripsis-like rearrangements.
    Samach A; Mafessoni F; Gross O; Melamed-Bessudo C; Filler-Hayut S; Dahan-Meir T; Amsellem Z; Pawlowski WP; Levy AA
    Plant Cell; 2023 Oct; 35(11):3957-3972. PubMed ID: 37497643
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Maize transformation: history, progress, and perspectives.
    Kausch AP; Wang K; Kaeppler HF; Gordon-Kamm W
    Mol Breed; 2021 Jun; 41(6):38. PubMed ID: 37309443
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Assembly of the Complete Mitochondrial Genome of
    Zhang X; Shan Y; Li J; Qin Q; Yu J; Deng H
    Int J Mol Sci; 2023 May; 24(9):. PubMed ID: 37176072
    [No Abstract]   [Full Text] [Related]  

  • 12. CRISPR/Cas9-Mediated Targeted DNA Integration: Rearrangements at the Junction of Plant and Plasmid DNA.
    Permyakova NV; Marenkova TV; Belavin PA; Zagorskaya AA; Sidorchuk YV; Deineko EV
    Int J Mol Sci; 2022 Aug; 23(15):. PubMed ID: 35955778
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Efficient gene targeting in soybean using Ochrobactrum haywardense-mediated delivery of a marker-free donor template.
    Kumar S; Liu ZB; Sanyour-Doyel N; Lenderts B; Worden A; Anand A; Cho HJ; Bolar J; Harris C; Huang L; Xing A; Richardson A
    Plant Physiol; 2022 Jun; 189(2):585-594. PubMed ID: 35191500
    [TBL] [Abstract][Full Text] [Related]  

  • 14. High-Throughput CRISPR/Cas9 Mutagenesis Streamlines Trait Gene Identification in Maize.
    Liu HJ; Jian L; Xu J; Zhang Q; Zhang M; Jin M; Peng Y; Yan J; Han B; Liu J; Gao F; Liu X; Huang L; Wei W; Ding Y; Yang X; Li Z; Zhang M; Sun J; Bai M; Song W; Chen H; Sun X; Li W; Lu Y; Liu Y; Zhao J; Qian Y; Jackson D; Fernie AR; Yan J
    Plant Cell; 2020 May; 32(5):1397-1413. PubMed ID: 32102844
    [TBL] [Abstract][Full Text] [Related]  

  • 15. DNA Repair and the Stability of the Plant Mitochondrial Genome.
    Chevigny N; Schatz-Daas D; Lotfi F; Gualberto JM
    Int J Mol Sci; 2020 Jan; 21(1):. PubMed ID: 31947741
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Genomic Outcomes of Haploid Induction Crosses in Potato (
    Amundson KR; OrdoƱez B; Santayana M; Tan EH; Henry IM; Mihovilovich E; Bonierbale M; Comai L
    Genetics; 2020 Feb; 214(2):369-380. PubMed ID: 31871130
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Detection and Identification of Genome Editing in Plants: Challenges and Opportunities.
    Grohmann L; Keilwagen J; Duensing N; Dagand E; Hartung F; Wilhelm R; Bendiek J; Sprink T
    Front Plant Sci; 2019; 10():236. PubMed ID: 30930911
    [TBL] [Abstract][Full Text] [Related]  

  • 18. True gene-targeting events by CRISPR/Cas-induced DSB repair of the PPO locus with an ectopically integrated repair template.
    de Pater S; Klemann BJPM; Hooykaas PJJ
    Sci Rep; 2018 Feb; 8(1):3338. PubMed ID: 29463822
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Targeted recombination between homologous chromosomes for precise breeding in tomato.
    Filler Hayut S; Melamed Bessudo C; Levy AA
    Nat Commun; 2017 May; 8():15605. PubMed ID: 28548094
    [TBL] [Abstract][Full Text] [Related]  

  • 20. A New Metazoan Recombination Rate Record and Consistently High Recombination Rates in the Honey Bee Genus Apis Accompanied by Frequent Inversions but Not Translocations.
    Rueppell O; Kuster R; Miller K; Fouks B; Rubio Correa S; Collazo J; Phaincharoen M; Tingek S; Koeniger N
    Genome Biol Evol; 2016 Dec; 8(12):3653-3660. PubMed ID: 28173114
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.