These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

51 related articles for article (PubMed ID: 10389172)

  • 1. [Modulatory effects of various factors of muscular origin on the function of the motor nerve endings].
    Drabkina TM; Matiushkin DP; RomanovskiÄ­ DIu
    Ross Fiziol Zh Im I M Sechenova; 1999 Jan; 85(1):149-58. PubMed ID: 10389172
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Effect of ethanol on the spontaneous transmitter release by nerve endings in the process of maturation.
    Bruno C; Cuppini R; Cuppini C
    Drug Alcohol Depend; 1986 Oct; 18(2):127-31. PubMed ID: 2877840
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The influence of skeletal muscle incubation medium on fatigue of neuromuscular preparation and on transmitter release at neuromuscular junctions in the frog.
    Drabkina TM; Matyushkin DP; Radzjukevich VK; Romanovsky DYu
    Gen Physiol Biophys; 1995 Apr; 14(2):153-70. PubMed ID: 8846883
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The effects of l-vesamicol on transmitter release from rat motor nerve terminals at high frequencies of nerve stimulation.
    Prior C; Searl T; Marshall IG
    Br J Pharmacol; 1989 Dec; 98 Suppl():826P. PubMed ID: 2575420
    [No Abstract]   [Full Text] [Related]  

  • 5. [The formation of nerve endings in the phasic muscles of the frog].
    Dobretsov MG; Zefirov AL; Kurtasanov RS; Khalilov IA; Vinogradova IM
    Neirofiziologiia; 1990; 22(1):99-107. PubMed ID: 2336137
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Ca(2+)-dependent and -independent processes in transmitter release from the motor nerve terminals of frog.
    Maeno T
    Jpn J Physiol; 1993; 43 Suppl 1():S119-24. PubMed ID: 7903713
    [No Abstract]   [Full Text] [Related]  

  • 7. [Reinnervation of a mixed muscle in the frog Rana temporaria with a regenerating homogeneous nerve].
    Radziukevich TL
    Zh Evol Biokhim Fiziol; 1995; 31(4):467-74. PubMed ID: 8779287
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Extra- and intracellular sphingosylphosphorylcholine promote spontaneous transmitter release from frog motor nerve endings.
    Brailoiu E; Dun NJ
    Mol Pharmacol; 2003 Jun; 63(6):1430-6. PubMed ID: 12761354
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of manganese ions on verapamil-induced increase of spontaneous transmitter release in motor nerve endings of rat diaphragm preparations.
    Nishimura M; Asai F; Urakawa N
    Arch Int Pharmacodyn Ther; 1986 Mar; 280(1):129-35. PubMed ID: 2872862
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Spontaneous transmitter release from motor nerve endings in muscle fibres of castrated and old animals.
    Vyskocil F; Gutmann E
    Experientia; 1969 Sep; 25(9):945-6. PubMed ID: 4391907
    [No Abstract]   [Full Text] [Related]  

  • 11. Facilitation, augmentation, and potentiation of transmitter release.
    Magleby KL
    Prog Brain Res; 1979; 49():175-82. PubMed ID: 42112
    [No Abstract]   [Full Text] [Related]  

  • 12. Mechanisms in the regulation of neurotransmitter release from brain nerve terminals: current hypotheses.
    Sihra TS; Nichols RA
    Neurochem Res; 1993 Jan; 18(1):47-58. PubMed ID: 8096629
    [No Abstract]   [Full Text] [Related]  

  • 13. Regulation of transmitter release by muscle length in frog motor nerve terminals. Dynamics of the effect and the role of integrin-ECM interactions.
    Chen BM; Grinnell AD
    Adv Second Messenger Phosphoprotein Res; 1994; 29():383-98. PubMed ID: 7848723
    [TBL] [Abstract][Full Text] [Related]  

  • 14. [Enzymatic methods for the identification of a transmitter substance in a specific brain nucleus (author's transl)].
    Kataoka K; Sorimachi M
    Tanpakushitsu Kakusan Koso; 1974 Jul; 19(7):537-49. PubMed ID: 4154482
    [No Abstract]   [Full Text] [Related]  

  • 15. Leptinotarsin-D, a neurotoxic protein, evokes neurotransmitter release from, and calcium flux into, isolated electric organ nerve terminals.
    Miljanich GP; Yeager RE; Hsiao TH
    J Neurobiol; 1988 Jun; 19(4):373-86. PubMed ID: 2454289
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effect of sustained limb ischemia on norepinephrine release from skeletal muscle sympathetic nerve endings.
    Kuroko Y; Tokunaga N; Yamazaki T; Akiyama T; Ishino K; Sano S; Mori H
    Neurochem Int; 2006 Oct; 49(5):448-53. PubMed ID: 16632086
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glutamate synapses and receptors on insect muscle.
    Usherwood PN
    Adv Biochem Psychopharmacol; 1981; 27():183-93. PubMed ID: 6108693
    [No Abstract]   [Full Text] [Related]  

  • 18. The calcium current of turtle cone photoreceptor axon terminals.
    Lasater EM; Witkovsky P
    Neurosci Res Suppl; 1991; 15():S165-73. PubMed ID: 1724692
    [No Abstract]   [Full Text] [Related]  

  • 19. A bioenergetic approach to the nerve terminal.
    Nicholls D
    Biochim Biophys Acta; 1992 Jul; 1101(2):264-5. PubMed ID: 1352992
    [No Abstract]   [Full Text] [Related]  

  • 20. Transmitter release and recycling of synaptic vesicle membrane at the neuromuscular junction.
    Hurlbut WP; Ceccarelli B
    Adv Cytopharmacol; 1974; 2():141-54. PubMed ID: 4140680
    [No Abstract]   [Full Text] [Related]  

    [Next]    [New Search]
    of 3.