These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
140 related articles for article (PubMed ID: 10390034)
1. How efficient are central mechanisms for the learning and retention of coincident timing actions? Fleury M; Bard C; Teasdale N; Michaud D; Lamarre Y Neuropsychologia; 1999 Jun; 37(6):723-30. PubMed ID: 10390034 [TBL] [Abstract][Full Text] [Related]
2. Influence of movement speed on accuracy and coordination of reaching movements to memorized targets in three-dimensional space in a deafferented subject. Messier J; Adamovich S; Berkinblit M; Tunik E; Poizner H Exp Brain Res; 2003 Jun; 150(4):399-416. PubMed ID: 12739083 [TBL] [Abstract][Full Text] [Related]
3. Proprioceptive loss and the perception, control and learning of arm movements in humans: evidence from sensory neuronopathy. Miall RC; Kitchen NM; Nam SH; Lefumat H; Renault AG; Ørstavik K; Cole JD; Sarlegna FR Exp Brain Res; 2018 Aug; 236(8):2137-2155. PubMed ID: 29779050 [TBL] [Abstract][Full Text] [Related]
4. The accuracy of interceptive action in time and space. Tresilian JR Exerc Sport Sci Rev; 2004 Oct; 32(4):167-73. PubMed ID: 15604936 [TBL] [Abstract][Full Text] [Related]
5. Self-moved target eye tracking in control and deafferented subjects: roles of arm motor command and proprioception in arm-eye coordination. Vercher JL; Gauthier GM; Guédon O; Blouin J; Cole J; Lamarre Y J Neurophysiol; 1996 Aug; 76(2):1133-44. PubMed ID: 8871226 [TBL] [Abstract][Full Text] [Related]
6. Is proprioception important for the timing of motor activities? LaRue J; Bard C; Fleury M; Teasdale N; Paillard J; Forget R; Lamarre Y Can J Physiol Pharmacol; 1995 Feb; 73(2):255-61. PubMed ID: 7621364 [TBL] [Abstract][Full Text] [Related]
7. Production of short timing responses: a comparative study with a deafferented patient. Fleury M; Macar F; Bard C; Teasdale N; Paillard J; Lamarre Y; Forget R Neuropsychologia; 1994 Nov; 32(11):1435-40. PubMed ID: 7877750 [TBL] [Abstract][Full Text] [Related]
8. Temporal and spatial occlusion of advanced visual information constrains movement (re)organization in one-handed catching behaviors. Stone JA; Maynard IW; North JS; Panchuk D; Davids K Acta Psychol (Amst); 2017 Mar; 174():80-88. PubMed ID: 28196753 [TBL] [Abstract][Full Text] [Related]
9. Evidence for stronger visuo-motor than visuo-proprioceptive conflict during mirror drawing performed by a deafferented subject and control subjects. Miall RC; Cole J Exp Brain Res; 2007 Jan; 176(3):432-9. PubMed ID: 16874511 [TBL] [Abstract][Full Text] [Related]
10. Constraints on the spatiotemporal accuracy of interceptive action: effects of target size on hitting a moving target. Tresilian JR; Plooy A; Carroll TJ Exp Brain Res; 2004 Apr; 155(4):509-26. PubMed ID: 14999437 [TBL] [Abstract][Full Text] [Related]
11. The role of proprioception and attention in a visuomotor adaptation task. Ingram HA; van Donkelaar P; Cole J; Vercher JL; Gauthier GM; Miall RC Exp Brain Res; 2000 May; 132(1):114-26. PubMed ID: 10836641 [TBL] [Abstract][Full Text] [Related]
12. Arm-trunk coordination in the absence of proprioception. Tunik E; Poizner H; Levin MF; Adamovich SV; Messier J; Lamarre Y; Feldman AG Exp Brain Res; 2003 Dec; 153(3):343-55. PubMed ID: 14504854 [TBL] [Abstract][Full Text] [Related]
13. Systematic changes in the duration and precision of interception in response to variation of amplitude and effector size. Tresilian JR; Plooy A Exp Brain Res; 2006 Jun; 171(4):421-35. PubMed ID: 16307234 [TBL] [Abstract][Full Text] [Related]
14. Intercepting a moving target: effects of temporal precision constraints and movement amplitude. Tresilian JR; Lonergan A Exp Brain Res; 2002 Jan; 142(2):193-207. PubMed ID: 11807574 [TBL] [Abstract][Full Text] [Related]
16. Hitting moving targets: effects of target speed and dimensions on movement time. Brouwer AM; Smeets JB; Brenner E Exp Brain Res; 2005 Aug; 165(1):28-36. PubMed ID: 15868174 [TBL] [Abstract][Full Text] [Related]
17. The acquisition and implementation of the smoothness maximization motion strategy is dependent on spatial accuracy demands. Sosnik R; Flash T; Hauptmann B; Karni A Exp Brain Res; 2007 Jan; 176(2):311-31. PubMed ID: 16874514 [TBL] [Abstract][Full Text] [Related]
18. Internally driven control of reaching movements: a study on a proprioceptively deafferented subject. Sarlegna FR; Gauthier GM; Bourdin C; Vercher JL; Blouin J Brain Res Bull; 2006 Apr; 69(4):404-15. PubMed ID: 16624672 [TBL] [Abstract][Full Text] [Related]
19. Timing of bimanual movements and deafferentation: implications for the role of sensory movement effects. Drewing K; Stenneken P; Cole J; Prinz W; Aschersleben G Exp Brain Res; 2004 Sep; 158(1):50-7. PubMed ID: 15007586 [TBL] [Abstract][Full Text] [Related]
20. Sensorimotor learning and associated visual perception are intact but unrelated in autism spectrum disorder. Hayes SJ; Andrew M; Foster NC; Elliott D; Gowen E; Bennett SJ Autism Res; 2018 Feb; 11(2):296-304. PubMed ID: 29052364 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]