BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10390840)

  • 1. Using probabilistic neural networks to model the toxicity of chemicals to the fathead minnow (Pimephales promelas): a study based on 865 compounds.
    Kaiser KL; Niculescu SP
    Chemosphere; 1999 Jun; 38(14):3237-45. PubMed ID: 10390840
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Prediction of the acute toxicity (96-h LC50) of organic compounds to the fathead minnow (Pimephales promelas) using a group contribution method.
    Martin TM; Young DM
    Chem Res Toxicol; 2001 Oct; 14(10):1378-85. PubMed ID: 11599929
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Probabilistic neural network modeling of the toxicity of chemicals to Tetrahymena pyriformis with molecular fragment descriptors.
    Kaiser KL; Niculescu SP; Schultz TW
    SAR QSAR Environ Res; 2002 Mar; 13(1):57-67. PubMed ID: 12074392
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Using fragment chemistry data mining and probabilistic neural networks in screening chemicals for acute toxicity to the fathead minnow.
    Niculescu SP; Atkinson A; Hammond G; Lewis M
    SAR QSAR Environ Res; 2004 Aug; 15(4):293-309. PubMed ID: 15370419
    [TBL] [Abstract][Full Text] [Related]  

  • 5. An automated group contribution method in predicting aquatic toxicity: the diatomic fragment approach.
    Casalegno M; Benfenati E; Sello G
    Chem Res Toxicol; 2005 Apr; 18(4):740-6. PubMed ID: 15833034
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Predicting acute aquatic toxicity of structurally diverse chemicals in fish using artificial intelligence approaches.
    Singh KP; Gupta S; Rai P
    Ecotoxicol Environ Saf; 2013 Sep; 95():221-33. PubMed ID: 23764236
    [TBL] [Abstract][Full Text] [Related]  

  • 7. A comparison of the lethal and sublethal toxicity of organic chemical mixtures to the fathead minnow (Pimephales promelas).
    Broderius SJ; Kahl MD; Elonen GE; Hammermeister DE; Hoglund MD
    Environ Toxicol Chem; 2005 Dec; 24(12):3117-27. PubMed ID: 16445094
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Robust modelling of acute toxicity towards fathead minnow (Pimephales promelas) using counter-propagation artificial neural networks and genetic algorithm.
    Drgan V; Župerl Š; Vračko M; Como F; Novič M
    SAR QSAR Environ Res; 2016 Jul; 27(7):501-19. PubMed ID: 27322761
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Modeling acute toxicity of chemicals to Daphnia magna: a probabilistic neural network approach.
    Kaiser KL; Niculescu SP
    Environ Toxicol Chem; 2001 Feb; 20(2):420-31. PubMed ID: 11351444
    [TBL] [Abstract][Full Text] [Related]  

  • 10. QSAR modeling with the electrotopological state indices: predicting the toxicity of organic chemicals.
    Huuskonen J
    Chemosphere; 2003 Feb; 50(7):949-53. PubMed ID: 12504133
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Regression and cluster analysis of the acute toxicity of 267 chemicals to six species of biota and the octanol/water partition coefficient.
    Kaiser KL; Esterby SR
    Sci Total Environ; 1991 Dec; 109-110():499-514. PubMed ID: 1815369
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A similarity-based QSAR model for predicting acute toxicity towards the fathead minnow (Pimephales promelas).
    Cassotti M; Ballabio D; Todeschini R; Consonni V
    SAR QSAR Environ Res; 2015; 26(3):217-43. PubMed ID: 25780951
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Use of statistical and neural net approaches in predicting toxicity of chemicals.
    Basak SC; Grunwald GD; Gute BD; Balasubramanian K; Opitz D
    J Chem Inf Comput Sci; 2000; 40(4):885-90. PubMed ID: 10955514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Development and validation of theoretical linear solvation energy relationship models for toxicity prediction to fathead minnow (Pimephales promelas).
    Lyakurwa F; Yang X; Li X; Qiao X; Chen J
    Chemosphere; 2014 Feb; 96():188-94. PubMed ID: 24216263
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Statistically validated QSARs, based on theoretical descriptors, for modeling aquatic toxicity of organic chemicals in Pimephales promelas (fathead minnow).
    Papa E; Villa F; Gramatica P
    J Chem Inf Model; 2005; 45(5):1256-66. PubMed ID: 16180902
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modeling the toxicity of chemicals to Tetrahymena pyriformis using molecular fragment descriptors and probabilistic neural networks.
    Niculescu SP; Kaiser KL; Schultz TW
    Arch Environ Contam Toxicol; 2000 Oct; 39(3):289-98. PubMed ID: 10948278
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Development of models to predict fish early-life stage toxicity from acute Daphnia magna toxicity
    Furuhama A; Hayashi TI; Yamamoto H
    SAR QSAR Environ Res; 2018 Sep; 29(9):725-742. PubMed ID: 30182748
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A new strategy for using supervised artificial neural networks in QSAR.
    Devillers J
    SAR QSAR Environ Res; 2005 Oct; 16(5):433-42. PubMed ID: 16272042
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Influence of natural organic matter source on copper toxicity to larval fathead minnows (Pimephales promelas): implications for the biotic ligand model.
    Ryan AC; Van Genderen EJ; Tomasso JR; Klaine SJ
    Environ Toxicol Chem; 2004 Jun; 23(6):1567-74. PubMed ID: 15376543
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Life stage and endpoint sensitivity differences of fathead minnow (Pimephales promelas) to chemicals with various modes of action.
    Wang YYL; Li P; Ohore OE; Wang Y; Zhang D; Bai Y; Su T; You J; Jin X; Liu W; Wang Z
    Environ Pollut; 2021 Dec; 290():117995. PubMed ID: 34419860
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.