These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10391)

  • 1. Metabolic N-oxidation of atropine, hyoscine and the corresponding nor-alkaloids by guinea-pig liver microsomal preparations.
    Phillipson JD; Handa SS; Gorrod JW
    J Pharm Pharmacol; 1976 Sep; 28(9):687-91. PubMed ID: 10391
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Affinities of the protonated and non-protonated forms of hyoscine and hyoscine N-oxide for muscarinic receptors of the guinea-pig ileum and a comparison of their size in solution with that of atropine.
    Barlow RB; Winter EA
    Br J Pharmacol; 1981 Apr; 72(4):657-64. PubMed ID: 7284683
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Sulphotransferase-dependent dehydration of atropine and scopolamine in guinea pig.
    Wada S; Shimizudani T; Yamada H; Oguri K; Yoshimura H
    Xenobiotica; 1994 Sep; 24(9):853-61. PubMed ID: 7810167
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Winter cherry bugs feed on plant tropane alkaloids and de-epoxidize scopolamine to atropine.
    Kitamura Y; Tominaga Y; Ikenaga T
    J Chem Ecol; 2004 Oct; 30(10):2085-90. PubMed ID: 15609839
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Microsomal N-hydroxylation of dibenzylamine.
    Beckett AH; Gibson GG
    Xenobiotica; 1975 Nov; 5(11):677-86. PubMed ID: 1189462
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Role of guinea pig and rabbit hepatic aldehyde oxidase in oxidative in vitro metabolism of cinchona antimalarials.
    Beedham C; al-Tayib Y; Smith JA
    Drug Metab Dispos; 1992; 20(6):889-95. PubMed ID: 1362942
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Hydroxylation of 4,4'-methylenebis(2-chloroaniline) by canine, guinea pig, and rat liver microsomes.
    Chen TH; Kuslikis BI; Braselton WE
    Drug Metab Dispos; 1989; 17(4):406-13. PubMed ID: 2571481
    [TBL] [Abstract][Full Text] [Related]  

  • 8. N-oxygenation of primary amines and hydroxylamines and retroreduction of hydroxylamines by adult human liver microsomes and adult human flavin-containing monooxygenase 3.
    Lin J; Berkman CE; Cashman JR
    Chem Res Toxicol; 1996; 9(7):1183-93. PubMed ID: 8902275
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Toxic alkaloids and their interaction with microsomal cytochrome P-450 in vitro.
    Peeples A; Dalvi RR
    J Appl Toxicol; 1982 Dec; 2(6):300-2. PubMed ID: 7185909
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Proceedings: In vitro metabolic N-oxidation of the minor tobacco alkaloids, (-)methylanabasine and (-)anabasine to yield a hydroxylamine and a nitrone in lung and liver homogenates.
    Beckett AH; Sheikh AH
    J Pharm Pharmacol; 1973 Dec; 25():Suppl:171P. PubMed ID: 4150582
    [No Abstract]   [Full Text] [Related]  

  • 11. Species differences in the hepatic microsomal metabolism of the pyrrolizidine alkaloid senecionine.
    Winter CK; Segall HJ; Jones AD
    Comp Biochem Physiol C Comp Pharmacol Toxicol; 1988; 90(2):429-33. PubMed ID: 2903002
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Activation of slaframine by liver microsomes and flavins.
    Spike TE; Aust SD
    Biochem Pharmacol; 1971 Apr; 20(4):721-8. PubMed ID: 4398329
    [No Abstract]   [Full Text] [Related]  

  • 13. The actions of atropine, tropenziline and N-butyl hyoscine bromide on the isolated distal colon of the guinea-pig: a comparison of their activities and mechanisms of action.
    Lecchini S; Del Tacca M; Soldani G; Frigg GM; Crema A
    J Pharm Pharmacol; 1969 Oct; 21(10):662-7. PubMed ID: 4390607
    [No Abstract]   [Full Text] [Related]  

  • 14. [Catabolism of atropine in the liver of the rat and the guinea pig. Identification of the metabolites formed by oxidation].
    Truhaut R; Yonger J
    C R Acad Hebd Seances Acad Sci D; 1967 May; 264(21):2526-8. PubMed ID: 4964425
    [No Abstract]   [Full Text] [Related]  

  • 15. Properties of microsomal enzyme systems that reduce N-hydroxyphentermine.
    Sum CY; Cho AK
    Drug Metab Dispos; 1976; 4(5):436-41. PubMed ID: 10142
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Mechanism of 2-naphthylamine oxidation catalysed by pig liver microsomes.
    Poulsen LL; Masters BS; Ziegler DM
    Xenobiotica; 1976 Aug; 6(8):481-98. PubMed ID: 10687
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Metabolism of procainamide to a hydroxylamine by rat and human hepatic microsomes.
    Uetrecht JP; Sweetman BJ; Woosley RL; Oates JA
    Drug Metab Dispos; 1984; 12(1):77-81. PubMed ID: 6141917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microsomal metabolism of arylamides by the rat and guinea pig--I. Oxidation of N-3-fluorenylacetamide at carbon-atom-9--a major metabolic reaction.
    Kaplan E; Gutmann HR; Emory TH
    Biochem Pharmacol; 1978; 27(11):1581-9. PubMed ID: 697900
    [No Abstract]   [Full Text] [Related]  

  • 19. Proceedings: Preliminary studies concerning the metabolism of hyoscine and hyoscyamine in the Solanaceae.
    Evans WC; Ghani A; Treagust PG
    J Pharm Pharmacol; 1974 Dec; 26 Suppl():112P. PubMed ID: 4156705
    [No Abstract]   [Full Text] [Related]  

  • 20. A comparison between stereospecificity of oracin reduction and stereoselectivity of oxidation of 11-dihydrooracin enantiomers in vitro in rat and guinea pig.
    Skálová L; Wsól V; Szotáková B; Kvasnicková E
    Chirality; 1999; 11(5-6):510-5. PubMed ID: 10368925
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.