These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
120 related articles for article (PubMed ID: 10391149)
1. Possible involvement of Ca2+/calmodulin-dependent protein kinase in the regulation of phospholipid biosynthesis in Microsporum gypseum. Giri S; Khuller GK Mol Cell Biochem; 1999 Apr; 194(1-2):265-70. PubMed ID: 10391149 [TBL] [Abstract][Full Text] [Related]
2. Identification, localization and possible role of calmodulin like protein in phospholipid synthesis of Microsporum gypseum. Bindra A; Giri S; Khuller GK Biochim Biophys Acta; 1995 Mar; 1255(2):118-22. PubMed ID: 7696325 [TBL] [Abstract][Full Text] [Related]
3. Possible role of calcium in phospholipid synthesis of Microsporum gypseum. Giri S; Mago N; Bindra A; Khuller GK Biochim Biophys Acta; 1994 Dec; 1215(3):337-4. PubMed ID: 7811720 [TBL] [Abstract][Full Text] [Related]
4. Alteration in protein kinase(s) level affects the phospholipid content in M. gypseum with modulated levels of calcium/cyclic AMP. Giri S; Khuller GK Mol Cell Biochem; 1997 Dec; 177(1-2):27-31. PubMed ID: 9450642 [TBL] [Abstract][Full Text] [Related]
5. Correlation between intracellular cAMP levels and phospholipids of Microsporum gypseum. Bindra A; Khuller GK Biochim Biophys Acta; 1992 Mar; 1124(2):185-9. PubMed ID: 1311953 [TBL] [Abstract][Full Text] [Related]
6. Influence of W-7, a calmodulin antagonist on phospholipid biosynthesis in Candida albicans. Dhillon NK; Sharma S; Khuller GK Lett Appl Microbiol; 2003; 36(6):382-6. PubMed ID: 12753246 [TBL] [Abstract][Full Text] [Related]
7. Further studies on the influence of dibutyryl cAMP, theophylline and prostaglandin E1 on composition and biosynthesis of phospholipids in Microsporum gypseum. Vaidya S; Khuller GK Indian J Biochem Biophys; 1989 Dec; 26(6):367-70. PubMed ID: 2561114 [TBL] [Abstract][Full Text] [Related]
8. Effect of dibutyryl cyclic AMP on lipid synthesis in Microsporum gypseum. Vaidya S; Khuller GK Biochim Biophys Acta; 1988 Jun; 960(3):435-40. PubMed ID: 2838092 [TBL] [Abstract][Full Text] [Related]
9. Biochemical characterization of Ca2+/calmodulin dependent protein kinase from Candida albicans. Dhillon NK; Sharma S; Khuller GK Mol Cell Biochem; 2003 Oct; 252(1-2):183-91. PubMed ID: 14577592 [TBL] [Abstract][Full Text] [Related]
10. Calcium-dependent protein kinase: widespread occurrence in various tissues and phyla of the animal kingdom and comparison of effects of phospholipid, calmodulin, and trifluoperazine. Kuo JF; Andersson RG; Wise BC; Mackerlova L; Salomonsson I; Brackett NL; Katoh N; Shoji M; Wrenn RW Proc Natl Acad Sci U S A; 1980 Dec; 77(12):7039-43. PubMed ID: 6938952 [TBL] [Abstract][Full Text] [Related]
11. Influence of aminophylline on the lipids in Microsporum gypseum. Bindra A; Khuller GK Biochim Biophys Acta; 1991 Jan; 1081(1):61-4. PubMed ID: 1846758 [TBL] [Abstract][Full Text] [Related]
12. Calcium induced alterations in structural and functional role of phospholipids in Microsporum gypseum. Giri S; Bindra A; Khuller GK Indian J Biochem Biophys; 1995 Jun; 32(3):166-9. PubMed ID: 7590859 [TBL] [Abstract][Full Text] [Related]
13. Reversible phosphorylation as a controlling factor for sustaining calcium oscillations in HeLa cells: Involvement of calmodulin-dependent kinase II and a calyculin A-inhibitable phosphatase. Zhu DM; Tekle E; Chock PB; Huang CY Biochemistry; 1996 Jun; 35(22):7214-23. PubMed ID: 8679550 [TBL] [Abstract][Full Text] [Related]
14. Ca(2+)-dependent enhancement of [3H]noradrenaline uptake in PC12 cells through calmodulin-dependent kinases. Uchida J; Kiuchi Y; Ohno M; Yura A; Oguchi K Brain Res; 1998 Nov; 809(2):155-64. PubMed ID: 9853106 [TBL] [Abstract][Full Text] [Related]
15. Promotion of granule cell survival by high K+ or excitatory amino acid treatment and Ca2+/calmodulin-dependent protein kinase activity. Hack N; Hidaka H; Wakefield MJ; Balázs R Neuroscience; 1993 Nov; 57(1):9-20. PubMed ID: 8278060 [TBL] [Abstract][Full Text] [Related]
16. In vivo studies on phospholipid biosynthesis in Microsporum gypseum. Bansal VS; Chopra A; Kasinathan C; Khuller GK Indian J Med Res; 1982 Dec; 76():832-6. PubMed ID: 6820356 [No Abstract] [Full Text] [Related]
17. Characterization of the phosphorylation of rat mammary ATP-citrate lyase and acetyl-CoA carboxylase by Ca2+ and calmodulin-dependent multiprotein kinase and Ca2+ and phospholipid-dependent protein kinase. Hardie DG; Carling D; Ferrari S; Guy PS; Aitken A Eur J Biochem; 1986 Jun; 157(3):553-61. PubMed ID: 2873035 [TBL] [Abstract][Full Text] [Related]
18. Are calcium-dependent protein kinases involved in the regulation of glycolytic/gluconeogenetic enzymes? Studies with Ca2+/calmodulin-dependent protein kinase and protein kinase C. Mieskes G; Kuduz J; Söling HD Eur J Biochem; 1987 Sep; 167(2):383-9. PubMed ID: 3040408 [TBL] [Abstract][Full Text] [Related]
19. Comparison of the effects of the membrane-associated Ca2+/calmodulin-dependent protein kinase on Ca(2+)-ATPase function in cardiac and slow-twitch skeletal muscle sarcoplasmic reticulum. Hawkins C; Xu A; Narayanan N Mol Cell Biochem; 1995 Jan; 142(2):131-8. PubMed ID: 7770065 [TBL] [Abstract][Full Text] [Related]
20. Two types of calcium-dependent protein phosphorylations modulated by calmodulin antagonists. Naphthalenesulfonamide derivatives. Tanaka T; Ohmura T; Yamakado T; Hidaka H Mol Pharmacol; 1982 Sep; 22(2):408-12. PubMed ID: 6897280 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]