BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10391479)

  • 1. Expression of the transcription factor Zif268 in the visual cortex of monocularly deprived rats: effects of nerve growth factor.
    Caleo M; Lodovichi C; Pizzorusso T; Maffei L
    Neuroscience; 1999; 91(3):1017-26. PubMed ID: 10391479
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nerve growth factor (NGF) prevents the shift in ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Maffei L; Berardi N; Domenici L; Parisi V; Pizzorusso T
    J Neurosci; 1992 Dec; 12(12):4651-62. PubMed ID: 1334503
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Experience-dependent plasticity of mouse visual cortex in the absence of the neuronal activity-dependent marker egr1/zif268.
    Mataga N; Fujishima S; Condie BG; Hensch TK
    J Neurosci; 2001 Dec; 21(24):9724-32. PubMed ID: 11739581
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Monocular deprivation effects in the rat visual cortex and lateral geniculate nucleus are prevented by nerve growth factor (NGF). I. Visual cortex.
    Berardi N; Domenici L; Parisi V; Pizzorusso T; Cellerino A; Maffei L
    Proc Biol Sci; 1993 Jan; 251(1330):17-23. PubMed ID: 8094561
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Neuronal activity in primate visual cortex assessed by immunostaining for the transcription factor Zif268.
    Chaudhuri A; Matsubara JA; Cynader MS
    Vis Neurosci; 1995; 12(1):35-50. PubMed ID: 7718501
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Effects of nerve growth factor on visual cortical plasticity require afferent electrical activity.
    Caleo M; Lodovichi C; Maffei L
    Eur J Neurosci; 1999 Aug; 11(8):2979-84. PubMed ID: 10457192
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Vascular endothelial growth factor B prevents the shift in the ocular dominance distribution of visual cortical neurons in monocularly deprived rats.
    Shan L; Yong H; Song Q; Wei Y; Qin R; Zhang G; Xu M; Zhang S
    Exp Eye Res; 2013 Apr; 109():17-21. PubMed ID: 23370270
    [TBL] [Abstract][Full Text] [Related]  

  • 8. TrkA activation in the rat visual cortex by antirat trkA IgG prevents the effect of monocular deprivation.
    Pizzorusso T; Berardi N; Rossi FM; Viegi A; Venstrom K; Reichardt LF; Maffei L
    Eur J Neurosci; 1999 Jan; 11(1):204-12. PubMed ID: 9987024
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Differential effects of neurotrophins on ocular dominance plasticity in developing and adult cat visual cortex.
    Galuske RA; Kim DS; Castrén E; Singer W
    Eur J Neurosci; 2000 Sep; 12(9):3315-30. PubMed ID: 10998115
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Nerve growth factor prevents the amblyopic effects of monocular deprivation.
    Domenici L; Berardi N; Carmignoto G; Vantini G; Maffei L
    Proc Natl Acad Sci U S A; 1991 Oct; 88(19):8811-5. PubMed ID: 1924342
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Differential expression of Zif268 and c-Fos in the primary visual cortex and lateral geniculate nucleus of normal Cebus monkeys and after monocular lesions.
    Soares JG; Pereira AC; Botelho EP; Pereira SS; Fiorani M; Gattass R
    J Comp Neurol; 2005 Feb; 482(2):166-75. PubMed ID: 15611990
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Effects of nerve growth factor on neuronal plasticity of the kitten visual cortex.
    Carmignoto G; Canella R; Candeo P; Comelli MC; Maffei L
    J Physiol; 1993 May; 464():343-60. PubMed ID: 8229806
    [TBL] [Abstract][Full Text] [Related]  

  • 13. cAMP/Ca2+ response element-binding protein function is essential for ocular dominance plasticity.
    Mower AF; Liao DS; Nestler EJ; Neve RL; Ramoa AS
    J Neurosci; 2002 Mar; 22(6):2237-45. PubMed ID: 11896163
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effects of monocular deprivation on the spatial pattern of visually induced expression of c-Fos protein.
    Nakadate K; Imamura K; Watanabe Y
    Neuroscience; 2012 Jan; 202():17-28. PubMed ID: 22178607
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nerve growth factor preserves behavioral visual acuity in monocularly deprived kittens.
    Fiorentini A; Berardi N; Maffei L
    Vis Neurosci; 1995; 12(1):51-5. PubMed ID: 7718502
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Rapid restoration of functional input to the visual cortex of the cat after brief monocular deprivation.
    Blakemore C; Hawken MJ
    J Physiol; 1982 Jun; 327():463-87. PubMed ID: 7120147
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of neurotrophins on cortical plasticity: same or different?
    Lodovichi C; Berardi N; Pizzorusso T; Maffei L
    J Neurosci; 2000 Mar; 20(6):2155-65. PubMed ID: 10704490
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Monocular deprivation decreases brain-derived neurotrophic factor immunoreactivity in the rat visual cortex.
    Rossi FM; Bozzi Y; Pizzorusso T; Maffei L
    Neuroscience; 1999 May; 90(2):363-8. PubMed ID: 10215141
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Molecular mechanism for loss of visual cortical responsiveness following brief monocular deprivation.
    Heynen AJ; Yoon BJ; Liu CH; Chung HJ; Huganir RL; Bear MF
    Nat Neurosci; 2003 Aug; 6(8):854-62. PubMed ID: 12886226
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Involvement of T-type Ca2+ channels in the potentiation of synaptic and visual responses during the critical period in rat visual cortex.
    Yoshimura Y; Inaba M; Yamada K; Kurotani T; Begum T; Reza F; Maruyama T; Komatsu Y
    Eur J Neurosci; 2008 Aug; 28(4):730-43. PubMed ID: 18657180
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.