BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

663 related articles for article (PubMed ID: 10391676)

  • 41. Binding of ETS family members is important for the function of the c-sis/platelet-derived growth factor-B TATA neighboring sequence in 12-O-tetradecanoylphorbol-13-acetate-treated K562 cells.
    Kujoth GC; Robinson DF; Fahl WE
    Cell Growth Differ; 1998 Jul; 9(7):523-34. PubMed ID: 9690620
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Genomic structure and chromosomal localization of the novel ETS factor, PE-2 (ERF).
    de Castro CM; Rabe SM; Langdon SD; Fleenor DE; Slentz-Kesler K; Ahmed MN; Qumsiyeh MB; Kaufman RE
    Genomics; 1997 Jun; 42(2):227-35. PubMed ID: 9192842
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Cooperative interaction of ets-1 with USF-1 required for HIV-1 enhancer activity in T cells.
    Sieweke MH; Tekotte H; Jarosch U; Graf T
    EMBO J; 1998 Mar; 17(6):1728-39. PubMed ID: 9501094
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Regulation of gene expression by transcription factors Ets-1 and Ets-2.
    Tymms MJ; Kola I
    Mol Reprod Dev; 1994 Oct; 39(2):208-14. PubMed ID: 7826624
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The epithelial-specific ETS transcription factor ESX/ESE-1/Elf-3 modulates breast cancer-associated gene expression.
    Eckel KL; Tentler JJ; Cappetta GJ; Diamond SE; Gutierrez-Hartmann A
    DNA Cell Biol; 2003 Feb; 22(2):79-94. PubMed ID: 12713734
    [TBL] [Abstract][Full Text] [Related]  

  • 46. TATA-box dependent trans-activation of the human HSP70 promoter by Myb proteins.
    Foos G; Natour S; Klempnauer KH
    Oncogene; 1993 Jul; 8(7):1775-82. PubMed ID: 8510924
    [TBL] [Abstract][Full Text] [Related]  

  • 47. ERF: genomic organization, chromosomal localization and promoter analysis of the human and mouse genes.
    Liu D; Pavlopoulos E; Modi W; Moschonas N; Mavrothalassitis G
    Oncogene; 1997 Mar; 14(12):1445-51. PubMed ID: 9136988
    [TBL] [Abstract][Full Text] [Related]  

  • 48. FREAC-1 contains a cell-type-specific transcriptional activation domain and is expressed in epithelial-mesenchymal interfaces.
    Mahlapuu M; Pelto-Huikko M; Aitola M; Enerbäck S; Carlsson P
    Dev Biol; 1998 Oct; 202(2):183-95. PubMed ID: 9769171
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Novel nuclear matrix protein HET binds to and influences activity of the HSP27 promoter in human breast cancer cells.
    Oesterreich S; Lee AV; Sullivan TM; Samuel SK; Davie JR; Fuqua SA
    J Cell Biochem; 1997 Nov; 67(2):275-86. PubMed ID: 9328833
    [TBL] [Abstract][Full Text] [Related]  

  • 50. A domain necessary for the transforming activity of SnoN is required for specific DNA binding, transcriptional repression and interaction with TAF(II)110.
    Cohen SB; Nicol R; Stavnezer E
    Oncogene; 1998 Nov; 17(19):2505-13. PubMed ID: 9824161
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Structure and evolution of the human SPRR3 gene: implications for function and regulation.
    Fischer DF; Sark MW; Lehtola MM; Gibbs S; van de Putte P; Backendorf C
    Genomics; 1999 Jan; 55(1):88-99. PubMed ID: 9889002
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Molecular cloning and characterization of PEBP2 beta, the heterodimeric partner of a novel Drosophila runt-related DNA binding protein PEBP2 alpha.
    Ogawa E; Inuzuka M; Maruyama M; Satake M; Naito-Fujimoto M; Ito Y; Shigesada K
    Virology; 1993 May; 194(1):314-31. PubMed ID: 8386878
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Expression and purification of a soluble ESX-binding core domain of SUR2.
    Jeon KH; Jun KY; Kim EY; Kwon Y
    Prep Biochem Biotechnol; 2013; 43(4):364-75. PubMed ID: 23464919
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Sex reversal by loss of the C-terminal transactivation domain of human SOX9.
    Südbeck P; Schmitz ML; Baeuerle PA; Scherer G
    Nat Genet; 1996 Jun; 13(2):230-2. PubMed ID: 8640233
    [TBL] [Abstract][Full Text] [Related]  

  • 55. A novel sea urchin nuclear receptor encoded by alternatively spliced maternal RNAs.
    Kontrogianni-Konstantopoulos A; Vlahou A; Vu D; Flytzanis CN
    Dev Biol; 1996 Aug; 177(2):371-82. PubMed ID: 8806817
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Two functionally distinct domains responsible for transactivation by the Ets family member ERM.
    Laget MP; Defossez PA; Albagli O; Baert JL; Dewitte F; Stehelin D; de Launoit Y
    Oncogene; 1996 Mar; 12(6):1325-36. PubMed ID: 8649835
    [TBL] [Abstract][Full Text] [Related]  

  • 57. cDNA cloning, genomic structure, molecular characterization and mRNA expression analysis of the Pekin duck interleukin-10 receptor 1.
    Yao Q; Fischer KP; Tyrrell DL; Gutfreund KS
    Int J Immunogenet; 2012 Feb; 39(1):55-67. PubMed ID: 22098679
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Association between proto-oncoprotein Rel and TATA-binding protein mediates transcriptional activation by NF-kappa B.
    Kerr LD; Ransone LJ; Wamsley P; Schmitt MJ; Boyer TG; Zhou Q; Berk AJ; Verma IM
    Nature; 1993 Sep; 365(6445):412-9. PubMed ID: 8413585
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Carboxyl-terminal 15-amino acid sequence of NFATx1 is possibly created by tissue-specific splicing and is essential for transactivation activity in T cells.
    Imamura R; Masuda ES; Naito Y; Imai S; Fujino T; Takano T; Arai K; Arai N
    J Immunol; 1998 Oct; 161(7):3455-63. PubMed ID: 9759864
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Residues in the TATA-binding protein required to mediate a transcriptional response to retinoic acid in EC cells.
    Keaveney M; Berkenstam A; Feigenbutz M; Vriend G; Stunnenberg HG
    Nature; 1993 Oct; 365(6446):562-6. PubMed ID: 8413615
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 34.