These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

126 related articles for article (PubMed ID: 10392282)

  • 1. Experimental study on hemolysis in centrifugal blood pumps: improvement of flow visualization method.
    Ahmed S; Funakubo A; Sakuma I; Fukui Y; Dohi T
    Artif Organs; 1999 Jun; 23(6):542-6. PubMed ID: 10392282
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Flow visualization study on centrifugal blood pump using a high speed video camera.
    Sakuma I; Tadokoro H; Fukui Y; Dohi T
    Artif Organs; 1995 Jul; 19(7):665-70. PubMed ID: 8572970
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Study of secondary flow in centrifugal blood pumps using a flow visualization method with a high-speed video camera.
    Sakuma I; Fukui Y; Dohi T
    Artif Organs; 1996 Jun; 20(6):541-5. PubMed ID: 8817952
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Computational fluid dynamics analysis to establish the design process of a centrifugal blood pump: second report.
    Miyazoe Y; Sawairi T; Ito K; Konishi Y; Yamane T; Nishida M; Asztalos B; Masuzawa T; Tsukiya T; Endo S; Taenaka Y
    Artif Organs; 1999 Aug; 23(8):762-8. PubMed ID: 10463504
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Study of Secondary Flow in Centrifugal Blood Pumps Using a Flow Visualization Method with a High-Speed Video Camera.
    Sakuma I; Fukui Y; Dohi T
    Artif Organs; 1996 May; 20(5):541-545. PubMed ID: 28868724
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Development of design methods for a centrifugal blood pump with a fluid dynamic approach: results in hemolysis tests.
    Masuzawa T; Tsukiya T; Endo S; Tatsumi E; Taenaka Y; Takano H; Yamane T; Nishida M; Asztalos B; Miyazoe Y; Ito K; Sawairi T; Konishi Y
    Artif Organs; 1999 Aug; 23(8):757-61. PubMed ID: 10463503
    [TBL] [Abstract][Full Text] [Related]  

  • 7. How to produce a pulsatile flow with low haemolysis?
    Qian KX; Zeng P; Ru WM; Yuan HY; Feng ZG; Li I
    J Med Eng Technol; 2000; 24(5):227-9. PubMed ID: 11204246
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Flow visualization as a complementary tool to hemolysis testing in the development of centrifugal blood pumps.
    Yamane T; Asztalos B; Nishida M; Masuzawa T; Takiura K; Taenaka Y; Konishi Y; Miyazoe Y; Ito K
    Artif Organs; 1998 May; 22(5):375-80. PubMed ID: 9609344
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Flow visualization analysis for evaluation of shear and recirculation in a new closed-type, monopivot centrifugal blood pump.
    Asztalos B; Yamane T; Nishida M
    Artif Organs; 1999 Oct; 23(10):939-46. PubMed ID: 10564293
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A cost-effective extracorporeal magnetically-levitated centrifugal blood pump employing a disposable magnet-free impeller.
    Hijikata W; Mamiya T; Shinshi T; Takatani S
    Proc Inst Mech Eng H; 2011 Dec; 225(12):1149-57. PubMed ID: 22320054
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Visualization study of the transient flow in the centrifugal blood pump impeller.
    Tsukiya T; Taenaka Y; Tatsumi E; Takano H
    ASAIO J; 2002; 48(4):431-6. PubMed ID: 12141476
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A compact centrifugal blood pump for extracorporeal circulation: design and performance.
    Tanaka S; Yamamoto S; Yamakoshi K; Kamiya A
    J Biomech Eng; 1987 Aug; 109(3):272-8. PubMed ID: 3657117
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Hemolytic effect of surface roughness of an impeller in a centrifugal blood pump.
    Takami Y; Nakazawa T; Makinouchi K; Tayama E; Glueck J; Benkowski R; Nosé Y
    Artif Organs; 1997 Jul; 21(7):686-90. PubMed ID: 9212939
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Properties of a monopivot centrifugal blood pump manufactured by 3D printing.
    Nishida M; Negishi T; Sakota D; Kosaka R; Maruyama O; Hyakutake T; Kuwana K; Yamane T
    J Artif Organs; 2016 Dec; 19(4):322-329. PubMed ID: 27370698
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The effects of pressure and flow on hemolysis caused by Bio-Medicus centrifugal pumps and roller pumps. Guidelines for choosing a blood pump.
    Tamari Y; Lee-Sensiba K; Leonard EF; Parnell V; Tortolani AJ
    J Thorac Cardiovasc Surg; 1993 Dec; 106(6):997-1007. PubMed ID: 8246582
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Elimination of adverse leakage flow in a miniature pediatric centrifugal blood pump by computational fluid dynamics-based design optimization.
    Wu J; Antaki JF; Wagner WR; Snyder TA; Paden BE; Borovetz HS
    ASAIO J; 2005; 51(5):636-43. PubMed ID: 16322730
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Hydrodynamic performance and heat generation by centrifugal pumps.
    Ganushchak Y; van Marken Lichtenbelt W; van der Nagel T; de Jong DS
    Perfusion; 2006 Nov; 21(6):373-9. PubMed ID: 17312862
    [TBL] [Abstract][Full Text] [Related]  

  • 18. [Pulsatile rotary pumps with low hemolysis].
    Qian K; Zeng P; Ru W; Yuan H; Feng Z; Li L
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2001 Sep; 18(3):391-3. PubMed ID: 11605497
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Computational fluid dynamics verified the advantages of streamlined impeller design in improving flow patterns and anti-haemolysis properties of centrifugal pump.
    Qian KX; Wang FQ; Zeng P; Ru WM; Yuan HY; Feng ZG
    J Med Eng Technol; 2006; 30(6):353-7. PubMed ID: 17060163
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of the impeller-driver magnetic coupling distance on hemolysis in a compact centrifugal pump.
    Nakazawa T; Makinouchi K; Takami Y; Glueck J; Takatani S; Nosé Y
    Artif Organs; 1996 Mar; 20(3):252-7. PubMed ID: 8694696
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.