BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

229 related articles for article (PubMed ID: 10393192)

  • 1. Assaying RNA chaperone activity in vivo using a novel RNA folding trap.
    Clodi E; Semrad K; Schroeder R
    EMBO J; 1999 Jul; 18(13):3776-82. PubMed ID: 10393192
    [TBL] [Abstract][Full Text] [Related]  

  • 2. RNA chaperone StpA loosens interactions of the tertiary structure in the td group I intron in vivo.
    Waldsich C; Grossberger R; Schroeder R
    Genes Dev; 2002 Sep; 16(17):2300-12. PubMed ID: 12208852
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Assaying RNA chaperone activity in vivo in bacteria using a ribozyme folding trap.
    Prenninger S; Schroeder R; Semrad K
    Nat Protoc; 2006; 1(3):1273-7. PubMed ID: 17406411
    [TBL] [Abstract][Full Text] [Related]  

  • 4. HIV-1 nucleocapsid protein activates transient melting of least stable parts of the secondary structure of TAR and its complementary sequence.
    Bernacchi S; Stoylov S; Piémont E; Ficheux D; Roques BP; Darlix JL; Mély Y
    J Mol Biol; 2002 Mar; 317(3):385-99. PubMed ID: 11922672
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A tyrosyl-tRNA synthetase suppresses structural defects in the two major helical domains of the group I intron catalytic core.
    Myers CA; Wallweber GJ; Rennard R; Kemel Y; Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Sep; 262(2):87-104. PubMed ID: 8831782
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A ribosomal function is necessary for efficient splicing of the T4 phage thymidylate synthase intron in vivo.
    Semrad K; Schroeder R
    Genes Dev; 1998 May; 12(9):1327-37. PubMed ID: 9573049
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Influence of RNA structural stability on the RNA chaperone activity of the Escherichia coli protein StpA.
    Grossberger R; Mayer O; Waldsich C; Semrad K; Urschitz S; Schroeder R
    Nucleic Acids Res; 2005; 33(7):2280-9. PubMed ID: 15849314
    [TBL] [Abstract][Full Text] [Related]  

  • 8. HIV-1 nucleocapsid protein as a nucleic acid chaperone: spectroscopic study of its helix-destabilizing properties, structural binding specificity, and annealing activity.
    Urbaneja MA; Wu M; Casas-Finet JR; Karpel RL
    J Mol Biol; 2002 May; 318(3):749-64. PubMed ID: 12054820
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Escherichia coli proteins, including ribosomal protein S12, facilitate in vitro splicing of phage T4 introns by acting as RNA chaperones.
    Coetzee T; Herschlag D; Belfort M
    Genes Dev; 1994 Jul; 8(13):1575-88. PubMed ID: 7958841
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Stem of SL1 RNA in HIV-1: structure and nucleocapsid protein binding for a 1 x 3 internal loop.
    Yuan Y; Kerwood DJ; Paoletti AC; Shubsda MF; Borer PN
    Biochemistry; 2003 May; 42(18):5259-69. PubMed ID: 12731867
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Folding of the td pre-RNA with the help of the RNA chaperone StpA.
    Mayer O; Waldsich C; Grossberger R; Schroeder R
    Biochem Soc Trans; 2002 Nov; 30(Pt 6):1175-80. PubMed ID: 12440999
    [TBL] [Abstract][Full Text] [Related]  

  • 12. A tyrosyl-tRNA synthetase protein induces tertiary folding of the group I intron catalytic core.
    Caprara MG; Mohr G; Lambowitz AM
    J Mol Biol; 1996 Apr; 257(3):512-31. PubMed ID: 8648621
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Function of the Neurospora crassa mitochondrial tyrosyl-tRNA synthetase in RNA splicing. Role of the idiosyncratic N-terminal extension and different modes of interaction with different group I introns.
    Mohr G; Rennard R; Cherniack AD; Stryker J; Lambowitz AM
    J Mol Biol; 2001 Mar; 307(1):75-92. PubMed ID: 11243805
    [TBL] [Abstract][Full Text] [Related]  

  • 14. The prion protein has DNA strand transfer properties similar to retroviral nucleocapsid protein.
    Gabus C; Auxilien S; Péchoux C; Dormont D; Swietnicki W; Morillas M; Surewicz W; Nandi P; Darlix JL
    J Mol Biol; 2001 Apr; 307(4):1011-21. PubMed ID: 11286552
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The strength of the HIV-1 3' splice sites affects Rev function.
    Kammler S; Otte M; Hauber I; Kjems J; Hauber J; Schaal H
    Retrovirology; 2006 Dec; 3():89. PubMed ID: 17144911
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A bipartite bacteriophage T4 SOC and HOC randomized peptide display library: detection and analysis of phage T4 terminase (gp17) and late sigma factor (gp55) interaction.
    Malys N; Chang DY; Baumann RG; Xie D; Black LW
    J Mol Biol; 2002 May; 319(2):289-304. PubMed ID: 12051907
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A specific RNA structural motif mediates high affinity binding by the HIV-1 nucleocapsid protein (NCp7).
    Allen P; Collins B; Brown D; Hostomsky Z; Gold L
    Virology; 1996 Nov; 225(2):306-15. PubMed ID: 8918917
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Self-splicing of the bacteriophage T4 group I introns requires efficient translation of the pre-mRNA in vivo and correlates with the growth state of the infected bacterium.
    Sandegren L; Sjöberg BM
    J Bacteriol; 2007 Feb; 189(3):980-90. PubMed ID: 17122344
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Endoribonuclease RegB from bacteriophage T4 is necessary for the degradation of early but not middle or late mRNAs.
    Sanson B; Hu RM; Troitskayadagger E; Mathy N; Uzan M
    J Mol Biol; 2000 Apr; 297(5):1063-74. PubMed ID: 10764573
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Analysis of the roles of tRNA structure, ribosomal protein L9, and the bacteriophage T4 gene 60 bypassing signals during ribosome slippage on mRNA.
    Herr AJ; Nelson CC; Wills NM; Gesteland RF; Atkins JF
    J Mol Biol; 2001 Jun; 309(5):1029-48. PubMed ID: 11399077
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.