BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

150 related articles for article (PubMed ID: 10393684)

  • 1. Prolonged diastolic time fraction protects myocardial perfusion when coronary blood flow is reduced.
    Merkus D; Kajiya F; Vink H; Vergroesen I; Dankelman J; Goto M; Spaan JA
    Circulation; 1999 Jul; 100(1):75-81. PubMed ID: 10393684
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Diastolic time fraction as a determinant of subendocardial perfusion.
    Fokkema DS; VanTeeffelen JW; Dekker S; Vergroesen I; Reitsma JB; Spaan JA
    Am J Physiol Heart Circ Physiol; 2005 May; 288(5):H2450-6. PubMed ID: 15615846
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of nitric oxide in regulation of coronary blood flow during myocardial ischemia in dogs.
    Kitakaze M; Node K; Minamino T; Kosaka H; Shinozaki Y; Mori H; Inoue M; Hori M; Kamada T
    J Am Coll Cardiol; 1996 Jun; 27(7):1804-12. PubMed ID: 8636571
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Pulse pressure-related changes in coronary flow in vivo are modulated by nitric oxide and adenosine.
    Recchia FA; Senzaki H; Saeki A; Byrne BJ; Kass DA
    Circ Res; 1996 Oct; 79(4):849-56. PubMed ID: 8831510
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Reversal of glibenclamide-induced coronary vasoconstriction by enhanced perfusion pulsatility: possible role for nitric oxide.
    Pagliaro P; Paolocci N; Isoda T; Saavedra WF; Sunagawa G; Kass DA
    Cardiovasc Res; 2000 Mar; 45(4):1001-9. PubMed ID: 10728426
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Contribution of nitric oxide to metabolic coronary vasodilation in the human heart.
    Quyyumi AA; Dakak N; Andrews NP; Gilligan DM; Panza JA; Cannon RO
    Circulation; 1995 Aug; 92(3):320-6. PubMed ID: 7634444
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Comparison of acute alterations in left ventricular relaxation and diastolic chamber stiffness induced by hypoxia and ischemia. Role of myocardial oxygen supply-demand imbalance.
    Serizawa T; Vogel WM; Apstein CS; Grossman W
    J Clin Invest; 1981 Jul; 68(1):91-102. PubMed ID: 7251868
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Subendocardial and subepicardial pressure-flow relations in the rat heart in diastolic and systolic arrest.
    Lamberts RR; Willemsen MJ; Sipkema P; Westerhof N
    J Biomech; 2004 May; 37(5):697-707. PubMed ID: 15046999
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Functional characteristics of intramyocardial capacitance vessels during diastole in the dog.
    Kajiya F; Tsujioka K; Goto M; Wada Y; Chen XL; Nakai M; Tadaoka S; Hiramatsu O; Ogasawara Y; Mito K
    Circ Res; 1986 Apr; 58(4):476-85. PubMed ID: 3698215
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of inhibition of nitric oxide formation on the regulation of coronary blood flow in anesthetized dogs.
    Solzbach U; Liao J; Eigler NL; Zeiher AM
    Basic Res Cardiol; 1995; 90(6):489-97. PubMed ID: 8773194
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Influence of nitric oxide synthase and adrenergic inhibition on adenosine-induced myocardial hyperemia.
    Buus NH; Bøttcher M; Hermansen F; Sander M; Nielsen TT; Mulvany MJ
    Circulation; 2001 Nov; 104(19):2305-10. PubMed ID: 11696470
    [TBL] [Abstract][Full Text] [Related]  

  • 12. An appreciation of the coronary circulation.
    Sethna DH; Moffitt EA
    Anesth Analg; 1986 Mar; 65(3):294-305. PubMed ID: 3513666
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Increased inactivation of nitric oxide is involved in impaired coronary flow reserve in heart failure.
    Nakamura R; Egashira K; Arimura K; Machida Y; Ide T; Tsutsui H; Shimokawa H; Takeshita A
    Am J Physiol Heart Circ Physiol; 2001 Dec; 281(6):H2619-25. PubMed ID: 11709431
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Effect of tachycardia on regional function and transmural myocardial perfusion during graded coronary pressure reduction in conscious dogs.
    Canty JM; Giglia J; Kandath D
    Circulation; 1990 Nov; 82(5):1815-25. PubMed ID: 2225378
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Nitric oxide contributes to oxygen demand-supply balance in hypoperfused right ventricle.
    Setty S; Tune JD; Downey HF
    Cardiovasc Res; 2004 Dec; 64(3):431-6. PubMed ID: 15537496
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Basal release of nitric oxide augments the Frank-Starling response in the isolated heart.
    Prendergast BD; Sagach VF; Shah AM
    Circulation; 1997 Aug; 96(4):1320-9. PubMed ID: 9286965
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Augmented basal nitric oxide production contributes to maintenance of coronary blood flow in dogs with pacing-induced heart failure.
    Niitsuma T; Saito T; Tamagawa K; Saitoh S; Mitsugi M; Sato M; Maehara K; Maruyama Y
    Jpn Heart J; 1999 Sep; 40(5):629-44. PubMed ID: 10888383
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The coronary pressure-flow determinants left ventricular compliance in dogs.
    Olsen CO; Attarian DE; Jones RN; Hill RC; Sink JD; Lee KL; Wechsler AS
    Circ Res; 1981 Oct; 49(4):856-65. PubMed ID: 7273358
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of inhibition of nitric oxide formation on regional blood flow in experimental myocardial infarction.
    Drexler H; Hablawetz E; Lu W; Riede U; Christes A
    Circulation; 1992 Jul; 86(1):255-62. PubMed ID: 1617777
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Myocardial blood flow after chronic cardiac decentralization in anesthetized dogs: effects of ACE-inhibition.
    Rouleau JR; Simard D; Rodrigue N; Blouin A; Kingma JG
    Auton Neurosci; 2002 Apr; 97(1):12-8. PubMed ID: 12036181
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.