BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

318 related articles for article (PubMed ID: 10393898)

  • 1. The gamma-subunit rotation and torque generation in F1-ATPase from wild-type or uncoupled mutant Escherichia coli.
    Omote H; Sambonmatsu N; Saito K; Sambongi Y; Iwamoto-Kihara A; Yanagida T; Wada Y; Futai M
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7780-4. PubMed ID: 10393898
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Subunit rotation of ATP synthase embedded in membranes: a or beta subunit rotation relative to the c subunit ring.
    Nishio K; Iwamoto-Kihara A; Yamamoto A; Wada Y; Futai M
    Proc Natl Acad Sci U S A; 2002 Oct; 99(21):13448-52. PubMed ID: 12357031
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mechanism of energy coupling in the FOF1-ATP synthase: the uncoupling mutation, gammaM23K, disrupts the use of binding energy to drive catalysis.
    Al-Shawi MK; Nakamoto RK
    Biochemistry; 1997 Oct; 36(42):12954-60. PubMed ID: 9335555
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Mechanical rotation of the c subunit oligomer in ATP synthase (F0F1): direct observation.
    Sambongi Y; Iko Y; Tanabe M; Omote H; Iwamoto-Kihara A; Ueda I; Yanagida T; Wada Y; Futai M
    Science; 1999 Nov; 286(5445):1722-4. PubMed ID: 10576736
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of mutations of conserved Lys-155 and Thr-156 residues in the phosphate-binding glycine-rich sequence of the F1-ATPase beta subunit of Escherichia coli.
    Omote H; Maeda M; Futai M
    J Biol Chem; 1992 Oct; 267(29):20571-6. PubMed ID: 1400377
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Beta-gamma subunit interaction is required for catalysis by H(+)-ATPase (ATP synthase). Beta subunit amino acid replacements suppress a gamma subunit mutation having a long unrelated carboxyl terminus.
    Jeanteur-De Beukelaer C; Omote H; Iwamoto-Kihara A; Maeda M; Futai M
    J Biol Chem; 1995 Sep; 270(39):22850-4. PubMed ID: 7559418
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Rotation of a complex of the gamma subunit and c ring of Escherichia coli ATP synthase. The rotor and stator are interchangeable.
    Tanabe M; Nishio K; Iko Y; Sambongi Y; Iwamoto-Kihara A; Wada Y; Futai M
    J Biol Chem; 2001 May; 276(18):15269-74. PubMed ID: 11279047
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Determination of the partial reactions of rotational catalysis in F1-ATPase.
    Scanlon JA; Al-Shawi MK; Le NP; Nakamoto RK
    Biochemistry; 2007 Jul; 46(30):8785-97. PubMed ID: 17620014
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catalytic control and coupling efficiency of the Escherichia coli FoF1 ATP synthase: influence of the Fo sector and epsilon subunit on the catalytic transition state.
    Peskova YB; Nakamoto RK
    Biochemistry; 2000 Sep; 39(38):11830-6. PubMed ID: 10995251
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The gamma subunit of the Escherichia coli ATP synthase. Mutations in the carboxyl-terminal region restore energy coupling to the amino-terminal mutant gamma Met-23-->Lys.
    Nakamoto RK; Maeda M; Futai M
    J Biol Chem; 1993 Jan; 268(2):867-72. PubMed ID: 8419364
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Rotation of Escherichia coli F(1)-ATPase.
    Noji H; Häsler K; Junge W; Kinosita K; Yoshida M; Engelbrecht S
    Biochem Biophys Res Commun; 1999 Jul; 260(3):597-9. PubMed ID: 10403811
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The Escherichia coli FOF1 gammaM23K uncoupling mutant has a higher K0.5 for Pi. Transition state analysis of this mutant and others reveals that synthesis and hydrolysis utilize the same kinetic pathway.
    Al-Shawi MK; Ketchum CJ; Nakamoto RK
    Biochemistry; 1997 Oct; 36(42):12961-9. PubMed ID: 9335556
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rotation of the epsilon subunit during catalysis by Escherichia coli FOF1-ATP synthase.
    Bulygin VV; Duncan TM; Cross RL
    J Biol Chem; 1998 Nov; 273(48):31765-9. PubMed ID: 9822640
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Subunit interactions of Escherichia coli F1-ATPase: mutants of the gamma subunits defective in interaction with the epsilon subunit isolated by the yeast two-hybrid system.
    Sawada K; Watanabe H; Moritani-Otsuka C; Kanazawa H
    Arch Biochem Biophys; 1997 Dec; 348(1):183-9. PubMed ID: 9390190
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The carboxyl-terminal helical domain of the ATP synthase γ subunit is involved in ε subunit conformation and energy coupling.
    Yamakita A; Liu Y; Futai M; Iwamoto-Kihara A
    Biochim Biophys Acta Bioenerg; 2019 May; 1860(5):361-368. PubMed ID: 30876890
    [TBL] [Abstract][Full Text] [Related]  

  • 16. ATP synthase F(1) sector rotation. Defective torque generation in the beta subunit Ser-174 to Phe mutant and its suppression by second mutations.
    Iko Y; Sambongi Y; Tanabe M; Iwamoto-Kihara A; Saito K; Ueda I; Wada Y; Futai M
    J Biol Chem; 2001 Dec; 276(50):47508-11. PubMed ID: 11590180
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Intergenic suppression of the gammaM23K uncoupling mutation in F0F1 ATP synthase by betaGlu-381 substitutions: the role of the beta380DELSEED386 segment in energy coupling.
    Ketchum CJ; Al-Shawi MK; Nakamoto RK
    Biochem J; 1998 Mar; 330 ( Pt 2)(Pt 2):707-12. PubMed ID: 9480879
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evidence that the NH2 terminus of vph1p, an integral subunit of the V0 sector of the yeast V-ATPase, interacts directly with the Vma1p and Vma13p subunits of the V1 sector.
    Landolt-Marticorena C; Williams KM; Correa J; Chen W; Manolson MF
    J Biol Chem; 2000 May; 275(20):15449-57. PubMed ID: 10747882
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Direct observation of the rotation of F1-ATPase.
    Noji H; Yasuda R; Yoshida M; Kinosita K
    Nature; 1997 Mar; 386(6622):299-302. PubMed ID: 9069291
    [TBL] [Abstract][Full Text] [Related]  

  • 20. F1ATPase of Escherichia coli: a mutation (uncA401) located in the middle of the alpha subunit affects the conformation essential for F1 activity.
    Kanazawa H; Noumi T; Matsuoka I; Hirata T; Futai M
    Arch Biochem Biophys; 1984 Jan; 228(1):258-69. PubMed ID: 6230047
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 16.