These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

148 related articles for article (PubMed ID: 10393918)

  • 1. Atomic levers control pyranose ring conformations.
    Marszalek PE; Pang YP; Li H; El Yazal J; Oberhauser AF; Fernandez JM
    Proc Natl Acad Sci U S A; 1999 Jul; 96(14):7894-8. PubMed ID: 10393918
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular dynamics simulations of forced conformational transitions in 1,6-linked polysaccharides.
    Lee G; Nowak W; Jaroniec J; Zhang Q; Marszalek PE
    Biophys J; 2004 Sep; 87(3):1456-65. PubMed ID: 15345528
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Theoretical studies of the pyranose ring under mechanical stress.
    Wolinski K; Brzyska A
    Carbohydr Res; 2018 Dec; 470():64-72. PubMed ID: 30274743
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Chair-boat transitions in single polysaccharide molecules observed with force-ramp AFM.
    Marszalek PE; Li H; Oberhauser AF; Fernandez JM
    Proc Natl Acad Sci U S A; 2002 Apr; 99(7):4278-83. PubMed ID: 11917130
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Investigation of the effects of fine structure on the nanomechanical properties of pectin.
    Williams MA; Marshall AT; Anjukandi P; Haverkamp RG
    Phys Rev E Stat Nonlin Soft Matter Phys; 2007 Aug; 76(2 Pt 1):021927. PubMed ID: 17930085
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Fingerprinting polysaccharides with single-molecule atomic force microscopy.
    Marszalek PE; Li H; Fernandez JM
    Nat Biotechnol; 2001 Mar; 19(3):258-62. PubMed ID: 11231560
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Polysaccharide elasticity governed by chair-boat transitions of the glucopyranose ring.
    Marszalek PE; Oberhauser AF; Pang YP; Fernandez JM
    Nature; 1998 Dec; 396(6712):661-4. PubMed ID: 9872313
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Simulation of force spectroscopy experiments on galacturonic acid oligomers.
    Cybulska J; Brzyska A; Zdunek A; Woliński K
    PLoS One; 2014; 9(9):e107896. PubMed ID: 25229407
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Ring inversion properties of 1→2, 1→3 and 1→6-linked hexopyranoses and their correlation with the conformation of glycosidic linkages.
    Plazinski W; Drach M; Plazinska A
    Carbohydr Res; 2016 Mar; 423():43-8. PubMed ID: 26878487
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Conformational analyses of the reaction coordinate of glycosidases.
    Davies GJ; Planas A; Rovira C
    Acc Chem Res; 2012 Feb; 45(2):308-16. PubMed ID: 21923088
    [TBL] [Abstract][Full Text] [Related]  

  • 11. B3LYP/6-311++G** study of alpha- and beta-D-glucopyranose and 1,5-anhydro-D-glucitol: 4C1 and 1C4 chairs, (3,O)B and B(3,O) boats, and skew-boat conformations.
    Appell M; Strati G; Willett JL; Momany FA
    Carbohydr Res; 2004 Feb; 339(3):537-51. PubMed ID: 15013391
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Glycosidic linkage rotations determine amylose stretching mechanism.
    Kuttel M; Naidoo KJ
    J Am Chem Soc; 2005 Jan; 127(1):12-3. PubMed ID: 15631424
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Pyranose ring puckering in aldopentoses, ketohexoses and deoxyaldohexoses. A molecular dynamics study.
    Panczyk K; Plazinski W
    Carbohydr Res; 2018 Jan; 455():62-70. PubMed ID: 29175656
    [TBL] [Abstract][Full Text] [Related]  

  • 14. CHARMM Drude Polarizable Force Field for Glycosidic Linkages Involving Pyranoses and Furanoses.
    Aytenfisu AH; Yang M; MacKerell AD
    J Chem Theory Comput; 2018 Jun; 14(6):3132-3143. PubMed ID: 29694037
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Viscoelastic properties of single polysaccharide molecules determined by analysis of thermally driven oscillations of an atomic force microscope cantilever.
    Kawakami M; Byrne K; Khatri B; McLeish TC; Radford SE; Smith DA
    Langmuir; 2004 Oct; 20(21):9299-303. PubMed ID: 15461521
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Pyranose ring conformations in mono- and oligosaccharides: a combined MD and DFT approach.
    Gaweda K; Plazinski W
    Phys Chem Chem Phys; 2017 Aug; 19(31):20760-20772. PubMed ID: 28740982
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Pyranose ring transition state is derived from cellobiohydrolase I induced conformational stability and glycosidic bond polarization.
    Barnett CB; Wilkinson KA; Naidoo KJ
    J Am Chem Soc; 2010 Sep; 132(37):12800-3. PubMed ID: 20795726
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The influence of the hexopyranose ring geometry on the conformation of glycosidic linkages investigated using molecular dynamics simulations.
    Plazinski W; Drach M
    Carbohydr Res; 2015 Oct; 415():17-27. PubMed ID: 26279522
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Quantitative Assessment of the Conformational Heterogeneity in Amylose across Force Fields.
    Koneru JK; Zhu X; Mondal J
    J Chem Theory Comput; 2019 Nov; 15(11):6203-6212. PubMed ID: 31560849
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Branching of the galacturonan backbone of comaruman, a pectin from the marsh cinquefoil Comarum palustre L.
    Ovodova RG; Popov SV; Bushneva OA; Golovchenko VV; Chizhov AO; Klinov DV; Ovodov YS
    Biochemistry (Mosc); 2006 May; 71(5):538-42. PubMed ID: 16732733
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.