These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

202 related articles for article (PubMed ID: 10393945)

  • 21. Decreasing mitochondrial RNA polymerase activity reverses biased inheritance of hypersuppressive mtDNA.
    Corbi D; Amon A
    PLoS Genet; 2021 Oct; 17(10):e1009808. PubMed ID: 34665800
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Yeast mitochondrial RNA polymerase is homologous to those encoded by bacteriophages T3 and T7.
    Masters BS; Stohl LL; Clayton DA
    Cell; 1987 Oct; 51(1):89-99. PubMed ID: 3308116
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Cloning and characterization of a cDNA encoding a bacteriophage-type RNA polymerase from the higher plant Chenopodium album.
    Weihe A; Hedtke B; Börner T
    Nucleic Acids Res; 1997 Jun; 25(12):2319-25. PubMed ID: 9171081
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Human mitochondrial ribosomal protein MRPL12 interacts directly with mitochondrial RNA polymerase to modulate mitochondrial gene expression.
    Wang Z; Cotney J; Shadel GS
    J Biol Chem; 2007 Apr; 282(17):12610-8. PubMed ID: 17337445
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Inactivation of the 20S proteasome maturase, Ump1p, leads to the instability of mtDNA in Saccharomyces cerevisiae.
    Malc E; Dzierzbicki P; Kaniak A; Skoneczna A; Ciesla Z
    Mutat Res; 2009 Oct; 669(1-2):95-103. PubMed ID: 19467248
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Control of mitochondrial gene expression in the yeast Saccharomyces cerevisiae.
    Biswas TK
    Proc Natl Acad Sci U S A; 1990 Dec; 87(23):9338-42. PubMed ID: 2251275
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The N-terminal domain of the yeast mitochondrial RNA polymerase regulates multiple steps of transcription.
    Paratkar S; Deshpande AP; Tang GQ; Patel SS
    J Biol Chem; 2011 May; 286(18):16109-20. PubMed ID: 21454631
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Two forms of RPO41-dependent RNA polymerase. Regulation of the RNA polymerase by glucose repression may control yeast mitochondrial gene expression.
    Wilcoxen SE; Peterson CR; Winkley CS; Keller MJ; Jaehning JA
    J Biol Chem; 1988 Sep; 263(25):12346-51. PubMed ID: 3045116
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Uracil-DNA glycosylase-deficient yeast exhibit a mitochondrial mutator phenotype.
    Chatterjee A; Singh KK
    Nucleic Acids Res; 2001 Dec; 29(24):4935-40. PubMed ID: 11812822
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Sequences homologous to yeast mitochondrial and bacteriophage T3 and T7 RNA polymerases are widespread throughout the eukaryotic lineage.
    Cermakian N; Ikeda TM; Cedergren R; Gray MW
    Nucleic Acids Res; 1996 Feb; 24(4):648-54. PubMed ID: 8604305
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A non-radioactive DNA synthesis assay demonstrates that elements of the Sigma 1278b Mip1 mitochondrial DNA polymerase domain and C-terminal extension facilitate robust enzyme activity.
    Young MJ; Imperial RJ; Lakhi S; Court DA
    Yeast; 2021 Apr; 38(4):262-275. PubMed ID: 33270277
    [TBL] [Abstract][Full Text] [Related]  

  • 32. A new nuclear suppressor system for a mitochondrial RNA polymerase mutant identifies an unusual zinc-finger protein and a polyglutamine domain protein in Saccharomyces cerevisiae.
    Bröhl S; Lisowsky T; Riemen G; Michaelis G
    Yeast; 1994 Jun; 10(6):719-31. PubMed ID: 7975891
    [TBL] [Abstract][Full Text] [Related]  

  • 33. RPO41-independent maintenance of [rho-] mitochondrial DNA in Saccharomyces cerevisiae.
    Fangman WL; Henly JW; Brewer BJ
    Mol Cell Biol; 1990 Jan; 10(1):10-5. PubMed ID: 2152961
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Double-stranded DNA-dependent ATPase Irc3p is directly involved in mitochondrial genome maintenance.
    Sedman T; Gaidutšik I; Villemson K; Hou Y; Sedman J
    Nucleic Acids Res; 2014 Dec; 42(21):13214-27. PubMed ID: 25389272
    [TBL] [Abstract][Full Text] [Related]  

  • 35. Multiple functions of yeast mitochondrial transcription factor Mtf1p during initiation.
    Savkina M; Temiakov D; McAllister WT; Anikin M
    J Biol Chem; 2010 Feb; 285(6):3957-3964. PubMed ID: 19920143
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Transcriptional commitment of mitochondrial RNA polymerase from Saccharomyces cerevisiae.
    Biswas TK
    J Mol Biol; 1992 Jul; 226(2):335-47. PubMed ID: 1640454
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Isolation of the nuclear gene encoding a subunit of the yeast mitochondrial RNA polymerase.
    Kelly JL; Greenleaf AL; Lehman IR
    J Biol Chem; 1986 Aug; 261(22):10348-51. PubMed ID: 2426263
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Mitochondria-nucleus network for genome stability.
    Kaniak-Golik A; Skoneczna A
    Free Radic Biol Med; 2015 May; 82():73-104. PubMed ID: 25640729
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Differential involvement of the related DNA helicases Pif1p and Rrm3p in mtDNA point mutagenesis and stability.
    O'Rourke TW; Doudican NA; Zhang H; Eaton JS; Doetsch PW; Shadel GS
    Gene; 2005 Jul; 354():86-92. PubMed ID: 15907372
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Mechanism of transcription initiation by the yeast mitochondrial RNA polymerase.
    Deshpande AP; Patel SS
    Biochim Biophys Acta; 2012; 1819(9-10):930-8. PubMed ID: 22353467
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.