These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
150 related articles for article (PubMed ID: 103940)
61. Distribution of cholecystokinin-immunoreactive cell bodies in the male and female rat: I. Hypothalamus. Micevych PE; Park SS; Akesson TR; Elde R J Comp Neurol; 1987 Jan; 255(1):124-36. PubMed ID: 3102567 [TBL] [Abstract][Full Text] [Related]
62. Afferent projections to the mammillary complex of the rat, with special reference to those from surrounding hypothalamic regions. Gonzalo-Ruiz A; Alonso A; Sanz JM; Llinás RR J Comp Neurol; 1992 Jul; 321(2):277-99. PubMed ID: 1380015 [TBL] [Abstract][Full Text] [Related]
63. Immunohistochemical mapping of galanin-like neurons in the rat central nervous system. Skofitsch G; Jacobowitz DM Peptides; 1985; 6(3):509-46. PubMed ID: 2415952 [TBL] [Abstract][Full Text] [Related]
64. Amygdalopetal projections in the cat. II. Subcortical afferent connections. A study with retrograde tracing techniques. Russchen FT J Comp Neurol; 1982 May; 207(2):157-76. PubMed ID: 7096644 [TBL] [Abstract][Full Text] [Related]
65. Projections of the ventral subiculum to the amygdala, septum, and hypothalamus: a PHAL anterograde tract-tracing study in the rat. Canteras NS; Swanson LW J Comp Neurol; 1992 Oct; 324(2):180-94. PubMed ID: 1430328 [TBL] [Abstract][Full Text] [Related]
66. Spinothalamic and spinohypothalamic tract neurons in the sacral spinal cord of rats. I. Locations of antidromically identified axons in the cervical cord and diencephalon. Katter JT; Dado RJ; Kostarczyk E; Giesler GJ J Neurophysiol; 1996 Jun; 75(6):2581-605. PubMed ID: 8793765 [TBL] [Abstract][Full Text] [Related]
67. The organization of neural inputs to the medial preoptic nucleus of the rat. Simerly RB; Swanson LW J Comp Neurol; 1986 Apr; 246(3):312-42. PubMed ID: 3517086 [TBL] [Abstract][Full Text] [Related]
68. Distribution of tyrosine-hydroxylase (TH)-immunoreactive neurons in the diencephalon of the pigeon (Columba livia domestica). Kiss JZ; Péczely P J Comp Neurol; 1987 Mar; 257(3):333-46. PubMed ID: 2881951 [TBL] [Abstract][Full Text] [Related]
69. Immunohistochemical localization of avian pancreatic polypeptide-like immunoreactivity in the rat hypothalamus. Card JP; Brecha N; Moore RY J Comp Neurol; 1983 Jun; 217(2):123-36. PubMed ID: 6886047 [TBL] [Abstract][Full Text] [Related]
70. Immunocytochemical localization of somatostatin-containing neurons in the rat hypothalamus. Dierickx K; Vandesande F Cell Tissue Res; 1979 Oct; 201(3):349-59. PubMed ID: 509487 [TBL] [Abstract][Full Text] [Related]
71. [Embryonal development of the brain of the shark Scyliorhinus canicula (L.). I. Formation of the shape of the brain, the migration mode and phase and the structure of the diencephalon]. Farner HP J Hirnforsch; 1978; 19(4):313-32. PubMed ID: 739140 [TBL] [Abstract][Full Text] [Related]
72. GABAergic and non-GABAergic thalamic, hypothalamic and basal forebrain projections to the ventral oral pontine reticular nucleus: their implication in REM sleep modulation. Rodrigo-Angulo ML; Heredero S; Rodríguez-Veiga E; Reinoso-Suárez F Brain Res; 2008 May; 1210():116-25. PubMed ID: 18407254 [TBL] [Abstract][Full Text] [Related]
73. Organization of permanent and transient neuropeptide Y-immunoreactive neuron groups and fiber systems in the developing hamster diencephalon. Botchkina GI; Morin LP J Comp Neurol; 1995 Jul; 357(4):573-602. PubMed ID: 7673485 [TBL] [Abstract][Full Text] [Related]
74. Ontogenetic studies on the topographical heterogeneity of somatostatin-containing neurons in rat hypothalamus. Daikoku S; Hisano S; Kawano H; Okamura Y; Tsuruo Y Cell Tissue Res; 1983; 233(2):347-54. PubMed ID: 6137284 [TBL] [Abstract][Full Text] [Related]
75. Distribution of cholecystokinin-like-immunoreactive neurons in the guinea pig forebrain. Ciofi P; Tramu G J Comp Neurol; 1990 Oct; 300(1):82-112. PubMed ID: 2229489 [TBL] [Abstract][Full Text] [Related]
76. Central administration of glucagon-like peptide-1 activates hypothalamic neuroendocrine neurons in the rat. Larsen PJ; Tang-Christensen M; Jessop DS Endocrinology; 1997 Oct; 138(10):4445-55. PubMed ID: 9322962 [TBL] [Abstract][Full Text] [Related]
77. Afferent projections to the lateral and dorsomedial hypothalamus in a lizard, Gekko gecko. Bruce LL; Neary TJ Brain Behav Evol; 1995; 46(1):30-42. PubMed ID: 7552219 [TBL] [Abstract][Full Text] [Related]
78. The diencephalon of the vervet monkey (Cercopithecus aethiops). Part II: epithalamus, subthalamus and hypothalamus. Simmons RM S Afr J Med Sci; 1976; 41(2):139-63. PubMed ID: 823650 [TBL] [Abstract][Full Text] [Related]
79. Orexin receptor-1 (OX-R1) immunoreactivity in chemically identified neurons of the hypothalamus: focus on orexin targets involved in control of food and water intake. Bäckberg M; Hervieu G; Wilson S; Meister B Eur J Neurosci; 2002 Jan; 15(2):315-28. PubMed ID: 11849298 [TBL] [Abstract][Full Text] [Related]
80. Efferent connections from the lateral hypothalamic region and the lateral preoptic area to the hypothalamic paraventricular nucleus of the rat. Larsen PJ; Hay-Schmidt A; Mikkelsen JD J Comp Neurol; 1994 Apr; 342(2):299-319. PubMed ID: 8201036 [TBL] [Abstract][Full Text] [Related] [Previous] [Next] [New Search]