These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

164 related articles for article (PubMed ID: 10394897)

  • 1. Nuclear factors GT-1 and 3AF1 interact with multiple sequences within the promoter of the Tdc gene from Madagascar periwinkle: GT-1 is involved in UV light-induced expression.
    Ouwerkerk PB; Trimborn TO; Hilliou F; Memelink J
    Mol Gen Genet; 1999 Jun; 261(4-5):610-22. PubMed ID: 10394897
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Identification of UV-B light-responsive regions in the promoter of the tryptophan decarboxylase gene from Catharanthus roseus.
    Ouwerkerk PB; Hallard D; Verpoorte R; Memelink J
    Plant Mol Biol; 1999 Nov; 41(4):491-503. PubMed ID: 10608659
    [TBL] [Abstract][Full Text] [Related]  

  • 3. The promoter of the strictosidine synthase gene from periwinkle confers elicitor-inducible expression in transgenic tobacco and binds nuclear factors GT-1 and GBF.
    Pasquali G; Erven AS; Ouwerkerk PB; Menke FL; Memelink J
    Plant Mol Biol; 1999 Apr; 39(6):1299-310. PubMed ID: 10380815
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elicitor-responsive promoter regions in the tryptophan decarboxylase gene from Catharanthus roseus.
    Ouwerkerk PB; Memelink J
    Plant Mol Biol; 1999 Jan; 39(1):129-36. PubMed ID: 10080715
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A promoter region that controls basal and elicitor-inducible expression levels of the NADPH:cytochrome P450 reductase gene (Cpr) from Catharanthus roseus binds nuclear factor GT-1.
    Cardoso MI; Meijer AH; Rueb S; Machado JA; Memelink J; Hoge JH
    Mol Gen Genet; 1997 Nov; 256(6):674-81. PubMed ID: 9435792
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide sequence of the tryptophan decarboxylase gene of Catharanthus roseus and expression of tdc-gusA gene fusions in Nicotiana tabacum.
    Goddijn OJ; Lohman FP; de Kam RJ; Schilperoort RA; Hoge JH
    Mol Gen Genet; 1994 Jan; 242(2):217-25. PubMed ID: 8159173
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Overexpression of a tryptophan decarboxylase cDNA in Catharanthus roseus crown gall calluses results in increased tryptamine levels but not in increased terpenoid indole alkaloid production.
    Goddijn OJ; Pennings EJ; van der Helm P; Schilperoort RA; Verpoorte R; Hoge JH
    Transgenic Res; 1995 Sep; 4(5):315-23. PubMed ID: 8589734
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Isolation of Catharanthus roseus (L.) G. Don Nuclei and Measurement of Rate of Tryptophan decarboxylase Gene Transcription Using Nuclear Run-On Transcription Assay.
    Kumar S; Bhatia S
    PLoS One; 2015; 10(5):e0127892. PubMed ID: 26024519
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Catharanthus roseus G-box binding factors 1 and 2 act as repressors of strictosidine synthase gene expression in cell cultures.
    Sibéril Y; Benhamron S; Memelink J; Giglioli-Guivarc'h N; Thiersault M; Boisson B; Doireau P; Gantet P
    Plant Mol Biol; 2001 Mar; 45(4):477-88. PubMed ID: 11352466
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A metal-dependent DNA-binding protein interacts with a constitutive element of a light-responsive promoter.
    Lam E; Kano-Murakami Y; Gilmartin P; Niner B; Chua NH
    Plant Cell; 1990 Sep; 2(9):857-66. PubMed ID: 2152132
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Promoter analysis of the Catharanthus roseus geraniol 10-hydroxylase gene involved in terpenoid indole alkaloid biosynthesis.
    Suttipanta N; Pattanaik S; Gunjan S; Xie CH; Littleton J; Yuan L
    Biochim Biophys Acta; 2007 Feb; 1769(2):139-48. PubMed ID: 17321612
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Expression of the Arabidopsis feedback-insensitive anthranilate synthase holoenzyme and tryptophan decarboxylase genes in Catharanthus roseus hairy roots.
    Hong SB; Peebles CA; Shanks JV; San KY; Gibson SI
    J Biotechnol; 2006 Mar; 122(1):28-38. PubMed ID: 16188339
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Expression of two consecutive genes of a secondary metabolic pathway in transgenic tobacco: molecular diversity influences levels of expression and product accumulation.
    Leech MJ; May K; Hallard D; Verpoorte R; De Luca V; Christou P
    Plant Mol Biol; 1998 Nov; 38(5):765-74. PubMed ID: 9862494
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Zinc finger proteins act as transcriptional repressors of alkaloid biosynthesis genes in Catharanthus roseus.
    Pauw B; Hilliou FA; Martin VS; Chatel G; de Wolf CJ; Champion A; Pré M; van Duijn B; Kijne JW; van der Fits L; Memelink J
    J Biol Chem; 2004 Dec; 279(51):52940-8. PubMed ID: 15465826
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A chimaeric tryptophan decarboxylase gene as a novel selectable marker in plant cells.
    Goddijn OJ; van der Duyn Schouten PM; Schilperoort RA; Hoge JH
    Plant Mol Biol; 1993 Aug; 22(5):907-12. PubMed ID: 8358036
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A Catharanthus roseus BPF-1 homologue interacts with an elicitor-responsive region of the secondary metabolite biosynthetic gene Str and is induced by elicitor via a JA-independent signal transduction pathway.
    van der Fits L; Zhang H; Menke FL; Deneka M; Memelink J
    Plant Mol Biol; 2000 Nov; 44(5):675-85. PubMed ID: 11198427
    [TBL] [Abstract][Full Text] [Related]  

  • 17. GT-1 binding site confers light responsive expression in transgenic tobacco.
    Lam E; Chua NH
    Science; 1990 Apr; 248(4954):471-4. PubMed ID: 2330508
    [TBL] [Abstract][Full Text] [Related]  

  • 18. A G-box element from the Catharanthus roseus strictosidine synthase (Str) gene promoter confers seed-specific expression in transgenic tobacco plants.
    Ouwerkerk PB; Memelink J
    Mol Gen Genet; 1999 Jun; 261(4-5):635-43. PubMed ID: 10394900
    [TBL] [Abstract][Full Text] [Related]  

  • 19. WRKY1-mediated regulation of tryptophan decarboxylase in tryptamine generation for withanamide production in Withania somnifera (Ashwagandha).
    Jadaun JS; Kushwaha AK; Sangwan NS; Narnoliya LK; Mishra S; Sangwan RS
    Plant Cell Rep; 2020 Nov; 39(11):1443-1465. PubMed ID: 32789542
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Targeting tryptophan decarboxylase to selected subcellular compartments of tobacco plants affects enzyme stability and in vivo function and leads to a lesion-mimic phenotype.
    Di Fiore S; Li Q; Leech MJ; Schuster F; Emans N; Fischer R; Schillberg S
    Plant Physiol; 2002 Jul; 129(3):1160-9. PubMed ID: 12114570
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 9.