These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

154 related articles for article (PubMed ID: 10394914)

  • 1. Specificity of the lipase-specific foldases of gram-negative bacteria and the role of the membrane anchor.
    El Khattabi M; Ockhuijsen C; Bitter W; Jaeger KE; Tommassen J
    Mol Gen Genet; 1999 Jun; 261(4-5):770-6. PubMed ID: 10394914
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Role of the lipase-specific foldase of Burkholderia glumae as a steric chaperone.
    El Khattabi M; Van Gelder P; Bitter W; Tommassen J
    J Biol Chem; 2000 Sep; 275(35):26885-91. PubMed ID: 10859310
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Lipase-specific foldases.
    Rosenau F; Tommassen J; Jaeger KE
    Chembiochem; 2004 Feb; 5(2):152-61. PubMed ID: 14760735
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Characterization of lipase-deficient mutants of Acinetobacter calcoaceticus BD413: identification of a periplasmic lipase chaperone essential for the production of extracellular lipase.
    Kok RG; van Thor JJ; Nugteren-Roodzant IM; Vosman B; Hellingwerf KJ
    J Bacteriol; 1995 Jun; 177(11):3295-307. PubMed ID: 7768830
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Structure of a membrane-based steric chaperone in complex with its lipase substrate.
    Pauwels K; Lustig A; Wyns L; Tommassen J; Savvides SN; Van Gelder P
    Nat Struct Mol Biol; 2006 Apr; 13(4):374-5. PubMed ID: 16518399
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Characterization of the extracellular lipase, LipA, of Acinetobacter calcoaceticus BD413 and sequence analysis of the cloned structural gene.
    Kok RG; van Thor JJ; Nugteren-Roodzant IM; Brouwer MB; Egmond MR; Nudel CB; Vosman B; Hellingwerf KJ
    Mol Microbiol; 1995 Mar; 15(5):803-18. PubMed ID: 7596283
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Functional cell-surface display of a lipase-specific chaperone.
    Wilhelm S; Rosenau F; Becker S; Buest S; Hausmann S; Kolmar H; Jaeger KE
    Chembiochem; 2007 Jan; 8(1):55-60. PubMed ID: 17173269
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Functional display of Pseudomonas and Burkholderia lipases using a translocator domain of EstA autotransporter on the cell surface of Escherichia coli.
    Yang TH; Kwon MA; Song JK; Pan JG; Rhee JS
    J Biotechnol; 2010 Apr; 146(3):126-9. PubMed ID: 20138931
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Bacterial lipases from Pseudomonas: regulation of gene expression and mechanisms of secretion.
    Rosenau F; Jaeger K
    Biochimie; 2000 Nov; 82(11):1023-32. PubMed ID: 11099799
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Role of the lipB gene product in the folding of the secreted lipase of Pseudomonas glumae.
    Frenken LG; de Groot A; Tommassen J; Verrips CT
    Mol Microbiol; 1993 Aug; 9(3):591-9. PubMed ID: 8412705
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Bacterial lipases.
    Jaeger KE; Ransac S; Dijkstra BW; Colson C; van Heuvel M; Misset O
    FEMS Microbiol Rev; 1994 Sep; 15(1):29-63. PubMed ID: 7946464
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Co-expression of an organic solvent-tolerant lipase and its cognate foldase of Pseudomonas aeruginosa CS-2 and the application of the immobilized recombinant lipase.
    Peng R; Lin J; Wei D
    Appl Biochem Biotechnol; 2011 Oct; 165(3-4):926-37. PubMed ID: 21720839
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Decoding the folding of Burkholderia glumae lipase: folding intermediates en route to kinetic stability.
    Pauwels K; Sanchez del Pino MM; Feller G; Van Gelder P
    PLoS One; 2012; 7(5):e36999. PubMed ID: 22615867
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Structural and dynamic insights revealing how lipase binding domain MD1 of Pseudomonas aeruginosa foldase affects lipase activation.
    Viegas A; Dollinger P; Verma N; Kubiak J; Viennet T; Seidel CAM; Gohlke H; Etzkorn M; Kovacic F; Jaeger KE
    Sci Rep; 2020 Feb; 10(1):3578. PubMed ID: 32107397
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Gene synthesis, expression in E. coli, and in vitro refolding of Pseudomonas sp. KWI 56 and Chromobacterium viscosum lipases and their chaperones.
    Traub PC; Schmidt-Dannert C; Schmitt J; Schmid RD
    Appl Microbiol Biotechnol; 2001 Mar; 55(2):198-204. PubMed ID: 11330714
    [TBL] [Abstract][Full Text] [Related]  

  • 16. An accessory gene, lipB, required for the production of active Pseudomonas glumae lipase.
    Frenken LG; Bos JW; Visser C; Müller W; Tommassen J; Verrips CT
    Mol Microbiol; 1993 Aug; 9(3):579-89. PubMed ID: 8412704
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Lipase and its modulator from Pseudomonas sp. strain KFCC 10818: proline-to-glutamine substitution at position 112 induces formation of enzymatically active lipase in the absence of the modulator.
    Kim EK; Jang WH; Ko JH; Kang JS; Noh MJ; Yoo OJ
    J Bacteriol; 2001 Oct; 183(20):5937-41. PubMed ID: 11566993
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Co-expression of the lipase and foldase of Pseudomonas aeruginosa to a functional lipase in Escherichia coli.
    Madan B; Mishra P
    Appl Microbiol Biotechnol; 2010 Jan; 85(3):597-604. PubMed ID: 19629472
    [TBL] [Abstract][Full Text] [Related]  

  • 19. In vivo functional expression of a screened P. aeruginosa chaperone-dependent lipase in E. coli.
    Wu X; You P; Su E; Xu J; Gao B; Wei D
    BMC Biotechnol; 2012 Sep; 12():58. PubMed ID: 22950599
    [TBL] [Abstract][Full Text] [Related]  

  • 20. High-level formation of active Pseudomonas cepacia lipase after heterologous expression of the encoding gene and its modified chaperone in Escherichia coli and rapid in vitro refolding.
    Quyen DT; Schmidt-Dannert C; Schmid RD
    Appl Environ Microbiol; 1999 Feb; 65(2):787-94. PubMed ID: 9925617
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.