BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

141 related articles for article (PubMed ID: 10395087)

  • 1. Modulation of the low affinity Ca2+-binding sites of skeletal muscle and blood platelets Ca2+-ATPase by nordihydroguaiaretic acid.
    Barata H; Cardoso CM; Wolosker H; de Meis L
    Mol Cell Biochem; 1999 May; 195(1-2):227-33. PubMed ID: 10395087
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Oxidative damage to sarcoplasmic reticulum Ca(2+)-pump induced by Fe2+/H2O2/ascorbate is not mediated by lipid peroxidation or thiol oxidation and leads to protein fragmentation.
    Castilho RF; Carvalho-Alves PC; Vercesi AE; Ferreira ST
    Mol Cell Biochem; 1996 Jun; 159(2):105-14. PubMed ID: 8858560
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Ethanol has different effects on Ca(2+)-transport ATPases of muscle, brain and blood platelets.
    Mitidieri F; de Meis L
    Biochem J; 1995 Dec; 312 ( Pt 3)(Pt 3):733-7. PubMed ID: 8554513
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reversal of the Ca2+ pump of blood platelets.
    Benech JC; Wolosker H; de Meis L
    Biochem J; 1995 Feb; 306 ( Pt 1)(Pt 1):35-8. PubMed ID: 7864826
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The Ca(2+)-ATPase isoforms of platelets are located in distinct functional Ca2+ pools and are uncoupled by a mechanism different from that of skeletal muscle Ca(2+)-ATPase.
    Engelender S; Wolosker H; de Meis L
    J Biol Chem; 1995 Sep; 270(36):21050-5. PubMed ID: 7673132
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Comparison of the effects of fluoride on the calcium pumps of cardiac and fast skeletal muscle sarcoplasmic reticulum: evidence for tissue-specific qualitative difference in calcium-induced pump conformation.
    Hawkins C; Xu A; Narayanan N
    Biochim Biophys Acta; 1994 May; 1191(2):231-43. PubMed ID: 8172909
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Calcium additional to that bound to the transport sites is required for full activation of the sarcoplasmic reticulum Ca-ATPase from skeletal muscle.
    Alonso GL; González DA; Takara D; Ostuni MA; Sánchez GA
    Biochim Biophys Acta; 1998 Oct; 1405(1-3):47-54. PubMed ID: 9784602
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Energy interconversion by the sarcoplasmic reticulum Ca2+-ATPase: ATP hydrolysis, Ca2+ transport, ATP synthesis and heat production.
    Meis LD
    An Acad Bras Cienc; 2000 Sep; 72(3):365-79. PubMed ID: 11028101
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Uncoupling of Ca2+ transport ATPase in muscle and blood platelets by diacylglycerol analogues and cyclosporin A antagonism.
    Cardoso CM; Rumjanek VM; De Meis L
    Biochem J; 1997 Nov; 327 ( Pt 3)(Pt 3):795-801. PubMed ID: 9581558
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Oxidative damage to sarcoplasmic reticulum Ca2+-ATPase AT submicromolar iron concentrations: evidence for metal-catalyzed oxidation.
    Moreau VH; Castilho RF; Ferreira ST; Carvalho-Alves PC
    Free Radic Biol Med; 1998 Sep; 25(4-5):554-60. PubMed ID: 9741592
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Demonstration of two different reactive sulfhydryl groups in the ATP-binding sites of Ca2+-ATPase of sarcoplasmic reticulum by disulfides of thioinosine triphosphates.
    Patzelt-Wenczler R; Kreickmann H; Schoner W
    Eur J Biochem; 1980 Aug; 109(1):167-75. PubMed ID: 6447597
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Role of the sarcoplasmic reticulum Ca2+-ATPase on heat production and thermogenesis.
    de Meis L
    Biosci Rep; 2001 Apr; 21(2):113-37. PubMed ID: 11725862
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Interaction of phosphatidic acid and phosphatidylserine with the Ca2+-ATPase of sarcoplasmic reticulum and the mechanism of inhibition.
    Dalton KA; East JM; Mall S; Oliver S; Starling AP; Lee AG
    Biochem J; 1998 Feb; 329 ( Pt 3)(Pt 3):637-46. PubMed ID: 9445393
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Interaction of cyclopiazonic acid with rat skeletal muscle sarcoplasmic reticulum vesicles. Effect on Ca2+ binding and Ca2+ permeability.
    Goeger DE; Riley RT
    Biochem Pharmacol; 1989 Nov; 38(22):3995-4003. PubMed ID: 2532015
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Control of heat produced during ATP hydrolysis by the sarcoplasmic reticulum Ca(2+)-ATPase in the absence of a Ca2+ gradient.
    de Meis L
    Biochem Biophys Res Commun; 1998 Feb; 243(2):598-600. PubMed ID: 9480854
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Sarco/endoplasmic reticulum Ca2+-ATPase isoforms: diverse responses to acidosis.
    Wolosker H; Rocha JB; Engelender S; Panizzutti R; De Miranda J; de Meis L
    Biochem J; 1997 Jan; 321 ( Pt 2)(Pt 2):545-50. PubMed ID: 9020893
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effects of arsenate on the Ca2+ ATPase of sarcoplasmic reticulum.
    Alves EW; de Meis L
    Eur J Biochem; 1987 Aug; 166(3):647-51. PubMed ID: 2956098
    [TBL] [Abstract][Full Text] [Related]  

  • 18. ATP regulation of calcium transport in back-inhibited sarcoplasmic reticulum vesicles.
    de Meis L; Sorenson MM
    Biochim Biophys Acta; 1989 Sep; 984(3):373-8. PubMed ID: 2528377
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Ca2+ gradient and drugs reveal different binding sites for Pi and Mg2+ in phosphorylation of the sarcoplasmic reticulum ATPase.
    De Meis L; Suzano VA; Caldeira T; Mintz E; Guillain F
    Eur J Biochem; 1991 Aug; 200(1):209-13. PubMed ID: 1831758
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The effect of monovalent and divalent cations on the ATP-dependent Ca2+-binding and phosphorylation during the reaction cycle of the sarcoplasmic reticulum Ca2+-transport ATPase.
    Medda P; Fassold E; Hasselbach W
    Eur J Biochem; 1987 Jun; 165(2):251-9. PubMed ID: 2954819
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.