These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
123 related articles for article (PubMed ID: 10395446)
1. Correlation between self-association modes and GTPase activation of dynamin. Binns DD; Barylko B; Grichine N; Atkinson MA; Helms MK; Jameson DM; Eccleston JF; Albanesi JP J Protein Chem; 1999 Apr; 18(3):277-90. PubMed ID: 10395446 [TBL] [Abstract][Full Text] [Related]
2. The mechanism of GTP hydrolysis by dynamin II: a transient kinetic study. Binns DD; Helms MK; Barylko B; Davis CT; Jameson DM; Albanesi JP; Eccleston JF Biochemistry; 2000 Jun; 39(24):7188-96. PubMed ID: 10852717 [TBL] [Abstract][Full Text] [Related]
3. Dynamin is a GTPase stimulated to high levels of activity by microtubules. Shpetner HS; Vallee RB Nature; 1992 Feb; 355(6362):733-5. PubMed ID: 1311055 [TBL] [Abstract][Full Text] [Related]
4. Activation of dynamin GTPase by acidic phospholipids and endogenous rat brain vesicles. Tuma PL; Stachniak MC; Collins CA J Biol Chem; 1993 Aug; 268(23):17240-6. PubMed ID: 8349610 [TBL] [Abstract][Full Text] [Related]
5. Dynamin GTPase domain mutants that differentially affect GTP binding, GTP hydrolysis, and clathrin-mediated endocytosis. Song BD; Leonard M; Schmid SL J Biol Chem; 2004 Sep; 279(39):40431-6. PubMed ID: 15262989 [TBL] [Abstract][Full Text] [Related]
6. Microtubules and Src homology 3 domains stimulate the dynamin GTPase via its C-terminal domain. Herskovits JS; Shpetner HS; Burgess CC; Vallee RB Proc Natl Acad Sci U S A; 1993 Dec; 90(24):11468-72. PubMed ID: 7505438 [TBL] [Abstract][Full Text] [Related]
7. Dynamin forms polymeric complexes in the presence of lipid vesicles. Characterization of chemically cross-linked dynamin molecules. Tuma PL; Collins CA J Biol Chem; 1995 Nov; 270(44):26707-14. PubMed ID: 7592898 [TBL] [Abstract][Full Text] [Related]
10. Activation of dynamin GTPase is a result of positive cooperativity. Tuma PL; Collins CA J Biol Chem; 1994 Dec; 269(49):30842-7. PubMed ID: 7983015 [TBL] [Abstract][Full Text] [Related]
11. Regulation of dynamin I GTPase activity by G protein betagamma subunits and phosphatidylinositol 4,5-bisphosphate. Lin HC; Gilman AG J Biol Chem; 1996 Nov; 271(45):27979-82. PubMed ID: 8910402 [TBL] [Abstract][Full Text] [Related]
16. Phosphatidylinositol (4,5)-bisphosphate-dependent activation of dynamins I and II lacking the proline/arginine-rich domains. Lin HC; Barylko B; Achiriloaie M; Albanesi JP J Biol Chem; 1997 Oct; 272(41):25999-6004. PubMed ID: 9325335 [TBL] [Abstract][Full Text] [Related]
17. Synergistic activation of dynamin GTPase by Grb2 and phosphoinositides. Barylko B; Binns D; Lin KM; Atkinson MA; Jameson DM; Yin HL; Albanesi JP J Biol Chem; 1998 Feb; 273(6):3791-7. PubMed ID: 9452513 [TBL] [Abstract][Full Text] [Related]
19. Calcium and gadolinium ions stimulate the GTPase activity of purified chicken brain tubulin through a conformational change. Soto C; Rodríguez PH; Monasterio O Biochemistry; 1996 May; 35(20):6337-44. PubMed ID: 8639578 [TBL] [Abstract][Full Text] [Related]
20. Dual function C-terminal domain of dynamin-1: modulation of self-assembly by interaction of the assembly site with SH3 domains. Scaife R; Vénien-Bryan C; Margolis RL Biochemistry; 1998 Dec; 37(51):17673-9. PubMed ID: 9922133 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]