These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10395463)

  • 1. Hypothetical model for monitoring microbial growth by using capacitance measurements--a minireview.
    Noble PA
    J Microbiol Methods; 1999 Jul; 37(1):45-9. PubMed ID: 10395463
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Factors influencing capacitance-based monitoring of microbial growth.
    Noble PA; Dziuba M; Harrison DJ; Albritton WL
    J Microbiol Methods; 1999 Jul; 37(1):51-64. PubMed ID: 10395464
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Electrical impedance measurements: rapid method for detecting and monitoring microorganisms.
    Cady P; Dufour SW; Shaw J; Kraeger SJ
    J Clin Microbiol; 1978 Mar; 7(3):265-72. PubMed ID: 348718
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Reduction of electrode polarization capacitance in low-frequency impedance spectroscopy by using mesh electrodes.
    Padmaraj D; Miller JH; Wosik J; Zagozdzon-Wosik W
    Biosens Bioelectron; 2011 Nov; 29(1):13-7. PubMed ID: 21872464
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Low-cost digital impedance meter for the detection of micro-organisms.
    Felice CJ; Clavin OE; Spinelli JC; Valentinuzzi ME; Gallo BV
    J Biomed Eng; 1988 Oct; 10(5):448-52. PubMed ID: 3070166
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The estimation of microbial biomass.
    Harris CM; Kell DB
    Biosensors; 1985; 1(1):17-84. PubMed ID: 3916271
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Detection of viable Salmonella typhimurium by impedance measurement of electrode capacitance and medium resistance.
    Yang L; Ruan C; Li Y
    Biosens Bioelectron; 2003 Dec; 19(5):495-502. PubMed ID: 14623474
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Modeling the surface phenomena in carbon paste electrodes by low frequency impedance and double-layer capacitance measurements.
    Savitri D; Mitra CK
    Bioelectrochem Bioenerg; 1999 Feb; 48(1):163-9. PubMed ID: 10228583
    [TBL] [Abstract][Full Text] [Related]  

  • 9. On the effect of body capacitance to ground in tetrapolar bioimpedance measurements.
    Aliau-Bonet C; Pallas-Areny R
    IEEE Trans Biomed Eng; 2012 Dec; 59(12):3405-11. PubMed ID: 22955870
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Use of conductance measurements for determination of enzymatic degradation of microbial biofilm.
    Johansen C; Bredtved BK; Møller S
    Methods Enzymol; 1999; 310():353-61. PubMed ID: 10547804
    [No Abstract]   [Full Text] [Related]  

  • 11. Multifrequency impedance measurement technique for wireless characterization of microbiological cell cultures.
    Wissenwasser J; Vellekoop MJ; Kapferer W; Lepperdinger G; Heer R
    Rev Sci Instrum; 2011 Nov; 82(11):115110. PubMed ID: 22129016
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biological capacitance studies of anodes in microbial fuel cells using electrochemical impedance spectroscopy.
    Lu Z; Girguis P; Liang P; Shi H; Huang G; Cai L; Zhang L
    Bioprocess Biosyst Eng; 2015 Jul; 38(7):1325-33. PubMed ID: 25656699
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A microwave interferometric system for simultaneous actuation and detection of single biological cells.
    Ferrier GA; Romanuik SF; Thomson DJ; Bridges GE; Freeman MR
    Lab Chip; 2009 Dec; 9(23):3406-12. PubMed ID: 19904408
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Impedance analysis of bio-fuel cell electrodes.
    Ouitrakul S; Sriyudthsak M; Charojrochkul S; Kakizono T
    Biosens Bioelectron; 2007 Dec; 23(5):721-7. PubMed ID: 17897820
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effects of skin temperature on skin-electrode impedance: measurements at high direct current density.
    Smith DC; Tan S; Follett DH
    J Med Eng Technol; 1992; 16(5):210-3. PubMed ID: 1287217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Skin impedance measurements using simple and compound electrodes.
    Woo EJ; Hua P; Webster JG; Tompkins WJ; Pallás-Areny R
    Med Biol Eng Comput; 1992 Jan; 30(1):97-102. PubMed ID: 1640763
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Performance evaluation of a low conductive growth medium (LCGM) for growth of healthy and stressed Listeria monocytogenes and other common bacterial species.
    Banada PP; Liu YS; Yang L; Bashir R; Bhunia AK
    Int J Food Microbiol; 2006 Aug; 111(1):12-20. PubMed ID: 16790285
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Microfluidic characterization of specific membrane capacitance and cytoplasm conductivity of single cells.
    Zheng Y; Shojaei-Baghini E; Wang C; Sun Y
    Biosens Bioelectron; 2013 Apr; 42():496-502. PubMed ID: 23246657
    [TBL] [Abstract][Full Text] [Related]  

  • 19. An automated blood culture system: the detection of anaerobic bacteria using a Malthus Microbiological Growth Analyser.
    McMaster JP; Barr JG; Campbell RR; Bennett RB; Smyth ET
    Ulster Med J; 1985 Oct; 54(2):133-9. PubMed ID: 3913089
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Interpretation of skeletal muscle four-electrode impedance measurements using spatial and temporal frequency-dependent conductivities.
    Roth BJ
    Med Biol Eng Comput; 1989 Sep; 27(5):491-5. PubMed ID: 2622229
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.