These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
253 related articles for article (PubMed ID: 10395740)
1. Probing the affinity and specificity of yeast alcohol dehydrogenase I for coenzymes. Fan F; Plapp BV Arch Biochem Biophys; 1999 Jul; 367(2):240-9. PubMed ID: 10395740 [TBL] [Abstract][Full Text] [Related]
2. Implication by site-directed mutagenesis of Arg314 and Tyr316 in the coenzyme site of pig mitochondrial NADP-dependent isocitrate dehydrogenase. Lee P; Colman RF Arch Biochem Biophys; 2002 May; 401(1):81-90. PubMed ID: 12054490 [TBL] [Abstract][Full Text] [Related]
3. Structure and function in yeast alcohol dehydrogenases. Plapp BV; Ganzhorn AJ; Gould RM; Green DW; Hershey AD Prog Clin Biol Res; 1987; 232():227-36. PubMed ID: 3303037 [TBL] [Abstract][Full Text] [Related]
4. Alpha-isoenzyme of alcohol dehydrogenase from monkey liver. Cloning, expression, mechanism, coenzyme, and substrate specificity. Light DR; Dennis MS; Forsythe IJ; Liu CC; Green DW; Kratzer DA; Plapp BV J Biol Chem; 1992 Jun; 267(18):12592-9. PubMed ID: 1618764 [TBL] [Abstract][Full Text] [Related]
5. Amino acid residues in the nicotinamide binding site contribute to catalysis by horse liver alcohol dehydrogenase. Rubach JK; Plapp BV Biochemistry; 2003 Mar; 42(10):2907-15. PubMed ID: 12627956 [TBL] [Abstract][Full Text] [Related]
6. Probing the determinants of coenzyme specificity in Peptostreptococcus asaccharolyticus glutamate dehydrogenase by site-directed mutagenesis. Carrigan JB; Engel PC FEBS J; 2007 Oct; 274(19):5167-74. PubMed ID: 17850332 [TBL] [Abstract][Full Text] [Related]
7. Structure-guided engineering of the coenzyme specificity of Pseudomonas fluorescens mannitol 2-dehydrogenase to enable efficient utilization of NAD(H) and NADP(H). Bubner P; Klimacek M; Nidetzky B FEBS Lett; 2008 Jan; 582(2):233-7. PubMed ID: 18082142 [TBL] [Abstract][Full Text] [Related]
8. Switch of coenzyme specificity of p-hydroxybenzoate hydroxylase. Eppink MH; Overkamp KM; Schreuder HA; Van Berkel WJ J Mol Biol; 1999 Sep; 292(1):87-96. PubMed ID: 10493859 [TBL] [Abstract][Full Text] [Related]
9. Residues that influence coenzyme preference in the aldehyde dehydrogenases. González-Segura L; Riveros-Rosas H; Julián-Sánchez A; Muñoz-Clares RA Chem Biol Interact; 2015 Jun; 234():59-74. PubMed ID: 25601141 [TBL] [Abstract][Full Text] [Related]
10. Purification of alcohol dehydrogenase from Entamoeba histolytica and Saccharomyces cerevisiae using zinc-affinity chromatography. Cabrera N; Rangel P; Hernández-Muñoz R; Pérez-Montfort R Protein Expr Purif; 1997 Aug; 10(3):340-4. PubMed ID: 9268681 [TBL] [Abstract][Full Text] [Related]
11. Engineering of a matched pair of xylose reductase and xylitol dehydrogenase for xylose fermentation by Saccharomyces cerevisiae. Krahulec S; Klimacek M; Nidetzky B Biotechnol J; 2009 May; 4(5):684-94. PubMed ID: 19452479 [TBL] [Abstract][Full Text] [Related]
12. Participation of histidine-51 in catalysis by horse liver alcohol dehydrogenase. LeBrun LA; Park DH; Ramaswamy S; Plapp BV Biochemistry; 2004 Mar; 43(11):3014-26. PubMed ID: 15023053 [TBL] [Abstract][Full Text] [Related]
13. Identification of an arginine residue in the dual coenzyme-specific glucose-6-phosphate dehydrogenase from Leuconostoc mesenteroides that plays a key role in binding NADP+ but not NAD+. Levy HR; Vought VE; Yin X; Adams MJ Arch Biochem Biophys; 1996 Feb; 326(1):145-51. PubMed ID: 8579362 [TBL] [Abstract][Full Text] [Related]
14. Engineering of coenzyme specificity of formate dehydrogenase from Saccharomyces cerevisiae. Serov AE; Popova AS; Fedorchuk VV; Tishkov VI Biochem J; 2002 Nov; 367(Pt 3):841-7. PubMed ID: 12144528 [TBL] [Abstract][Full Text] [Related]
15. Structural basis for the alteration of coenzyme specificity in a malate dehydrogenase mutant. Tomita T; Fushinobu S; Kuzuyama T; Nishiyama M Biochem Biophys Res Commun; 2006 Aug; 347(2):502-8. PubMed ID: 16828705 [TBL] [Abstract][Full Text] [Related]
16. Activation of horse liver alcohol dehydrogenase upon substitution of tryptophan 314 at the dimer interface. Strasser F; Dey J; Eftink MR; Plapp BV Arch Biochem Biophys; 1998 Oct; 358(2):369-76. PubMed ID: 9784252 [TBL] [Abstract][Full Text] [Related]
17. Kinetic properties of native and mutagenized isoforms of mitochondrial alcohol dehydrogenase III purified from Kluyveromyces lactis. Brisdelli F; Saliola M; Pascarella S; Luzi C; Franceschini N; Falcone C; Martini F; Bozzi A Biochimie; 2004; 86(9-10):705-12. PubMed ID: 15556281 [TBL] [Abstract][Full Text] [Related]
18. Effect of substrates and coenzymes on the molecular symmetry-related properties of horse liver and yeast alcohol dehydrogenases. Malhotra OP; Singh LR; Srinivasan Indian J Biochem Biophys; 1989 Apr; 26(2):63-73. PubMed ID: 2673991 [TBL] [Abstract][Full Text] [Related]
19. Broadening the cofactor specificity of a thermostable alcohol dehydrogenase using rational protein design introduces novel kinetic transient behavior. Campbell E; Wheeldon IR; Banta S Biotechnol Bioeng; 2010 Dec; 107(5):763-74. PubMed ID: 20632378 [TBL] [Abstract][Full Text] [Related]
20. An aspartate residue in yeast alcohol dehydrogenase I determines the specificity for coenzyme. Fan F; Lorenzen JA; Plapp BV Biochemistry; 1991 Jul; 30(26):6397-401. PubMed ID: 2054345 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]