These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

231 related articles for article (PubMed ID: 10396626)

  • 1. A neural interface for a cortical vision prosthesis.
    Normann RA; Maynard EM; Rousche PJ; Warren DJ
    Vision Res; 1999 Jul; 39(15):2577-87. PubMed ID: 10396626
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Feasibility of a visual prosthesis for the blind based on intracortical microstimulation of the visual cortex.
    Schmidt EM; Bak MJ; Hambrecht FT; Kufta CV; O'Rourke DK; Vallabhanath P
    Brain; 1996 Apr; 119 ( Pt 2)():507-22. PubMed ID: 8800945
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Chronic stability of a neuroprosthesis comprising multiple adjacent Utah arrays in monkeys.
    Chen X; Wang F; Kooijmans R; Klink PC; Boehler C; Asplund M; Roelfsema PR
    J Neural Eng; 2023 Jun; 20(3):. PubMed ID: 37386891
    [No Abstract]   [Full Text] [Related]  

  • 4. Visual prostheses based on direct interfaces with the visual system.
    Hambrecht FT
    Baillieres Clin Neurol; 1995 Apr; 4(1):147-65. PubMed ID: 7633780
    [No Abstract]   [Full Text] [Related]  

  • 5. Simulation of a phosphene-based visual field: visual acuity in a pixelized vision system.
    Cha K; Horch K; Normann RA
    Ann Biomed Eng; 1992; 20(4):439-49. PubMed ID: 1510295
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Visual percepts evoked with an intracortical 96-channel microelectrode array inserted in human occipital cortex.
    Fernández E; Alfaro A; Soto-Sánchez C; Gonzalez-Lopez P; Lozano AM; Peña S; Grima MD; Rodil A; Gómez B; Chen X; Roelfsema PR; Rolston JD; Davis TS; Normann RA
    J Clin Invest; 2021 Dec; 131(23):. PubMed ID: 34665780
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Studies on the feasibility of a subretinal visual prosthesis: data from Yucatan micropig and rabbit.
    Schwahn HN; Gekeler F; Kohler K; Kobuch K; Sachs HG; Schulmeyer F; Jakob W; Gabel VP; Zrenner E
    Graefes Arch Clin Exp Ophthalmol; 2001 Dec; 239(12):961-7. PubMed ID: 11820703
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Contribution to the theory of prosthetic vision.
    Hallum LE; Suaning GJ; Lovell NH
    ASAIO J; 2004; 50(4):392-6. PubMed ID: 15307555
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Saturation in Phosphene Size with Increasing Current Levels Delivered to Human Visual Cortex.
    Bosking WH; Sun P; Ozker M; Pei X; Foster BL; Beauchamp MS; Yoshor D
    J Neurosci; 2017 Jul; 37(30):7188-7197. PubMed ID: 28652411
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple factors may influence the performance of a visual prosthesis based on intracortical microstimulation: nonhuman primate behavioural experimentation.
    Torab K; Davis TS; Warren DJ; House PA; Normann RA; Greger B
    J Neural Eng; 2011 Jun; 8(3):035001. PubMed ID: 21593550
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Artificial human vision.
    Dowling J
    Expert Rev Med Devices; 2005 Jan; 2(1):73-85. PubMed ID: 16293031
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Visual cortical prosthesis: an electrical perspective.
    Pio-Lopez L; Poulkouras R; Depannemaecker D
    J Med Eng Technol; 2021 Jul; 45(5):394-407. PubMed ID: 33843427
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Rehabilitation regimes based upon psychophysical studies of prosthetic vision.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    J Neural Eng; 2009 Jun; 6(3):035009. PubMed ID: 19458400
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phosphenes produced by electrical stimulation of human occipital cortex, and their application to the development of a prosthesis for the blind.
    Dobelle WH; Mladejovsky MG
    J Physiol; 1974 Dec; 243(2):553-76. PubMed ID: 4449074
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Surgical feasibility and biocompatibility of wide-field dual-array suprachoroidal-transretinal stimulation prosthesis in middle-sized animals.
    Lohmann TK; Kanda H; Morimoto T; Endo T; Miyoshi T; Nishida K; Kamei M; Walter P; Fujikado T
    Graefes Arch Clin Exp Ophthalmol; 2016 Apr; 254(4):661-73. PubMed ID: 26194404
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Electrical stimulation with a penetrating optic nerve electrode array elicits visuotopic cortical responses in cats.
    Lu Y; Yan Y; Chai X; Ren Q; Chen Y; Li L
    J Neural Eng; 2013 Jun; 10(3):036022. PubMed ID: 23665847
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Simulating prosthetic vision: I. Visual models of phosphenes.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    Vision Res; 2009 Jun; 49(12):1493-506. PubMed ID: 19504749
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of extraocular electrodes for a retinal prosthesis using evoked potentials in cat visual cortex.
    Chowdhury V; Morley JW; Coroneo MT
    J Clin Neurosci; 2005 Jun; 12(5):574-9. PubMed ID: 16051097
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Implantation of stimulation electrodes in the subretinal space to demonstrate cortical responses in Yucatan minipig in the course of visual prosthesis development.
    Sachs HG; Gekeler F; Schwahn H; Jakob W; Köhler M; Schulmeyer F; Marienhagen J; Brunner U; Framme C
    Eur J Ophthalmol; 2005; 15(4):493-9. PubMed ID: 16001384
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Simulating prosthetic vision: II. Measuring functional capacity.
    Chen SC; Suaning GJ; Morley JW; Lovell NH
    Vision Res; 2009 Sep; 49(19):2329-43. PubMed ID: 19607855
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 12.