BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10396846)

  • 1. Blind separation of multichannel electrogastrograms using independent component analysis based on a neural network.
    Wang ZS; Cheung JY; Chen JD
    Med Biol Eng Comput; 1999 Jan; 37(1):80-6. PubMed ID: 10396846
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Extraction of gastric slow waves from electrogastrograms: combining independent component analysis and adaptive signal enhancement.
    Liang H
    Med Biol Eng Comput; 2005 Mar; 43(2):245-51. PubMed ID: 15865135
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Adaptive independent component analysis of multichannel electrogastrograms.
    Liang H
    Med Eng Phys; 2001 Mar; 23(2):91-7. PubMed ID: 11413061
    [TBL] [Abstract][Full Text] [Related]  

  • 4. What can be measured from surface electrogastrography. Computer simulations.
    Liang J; Chen JD
    Dig Dis Sci; 1997 Jul; 42(7):1331-43. PubMed ID: 9246026
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Empirical Mode Decomposition for slow wave extraction from electrogastrographical signals.
    Mika B; Komorowski D; Tkacz E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():4138-41. PubMed ID: 26737205
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Dynamics of level of randomness of electrogastrograms can be indicative of gastric electrical uncoupling in dogs.
    Sanmiguel CP; Mintchev MP; Bowes KL
    Dig Dis Sci; 1999 Mar; 44(3):523-8. PubMed ID: 10080144
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Assessment of slow wave propagation in multichannel electrogastrography by using noise-assisted multivariate empirical mode decomposition and cross-covariance analysis.
    Mika B; Komorowski D; Tkacz E
    Comput Biol Med; 2018 Sep; 100():305-315. PubMed ID: 29397919
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Wavelet analysis in a canine model of gastric electrical uncoupling.
    de SobralCintra RJ; Tchervensky IV; Dimitrov VS; Mintchev MP
    Physiol Meas; 2004 Dec; 25(6):1355-69. PubMed ID: 15712715
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Non-invasive identification of gastric contractions from surface electrogastrogram using back-propagation neural networks.
    Chen JD; Lin Z; Wu Q; McCallum RW
    Med Eng Phys; 1995 Apr; 17(3):219-25. PubMed ID: 7795860
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Noninvasive feature-based detection of delayed gastric emptying in humans using neural networks.
    Chen JD; Lin Z; McCallum RW
    IEEE Trans Biomed Eng; 2000 Mar; 47(3):409-12. PubMed ID: 10743784
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Electrogastrography.
    Rossi Z; Forlini G; Fenderico P; Cipolla R; Nasoni S
    Eur Rev Med Pharmacol Sci; 2005; 9(5 Suppl 1):29-35. PubMed ID: 16457127
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Application of combined genetic algorithms with cascade correlation to diagnosis of delayed gastric emptying from electrogastrograms.
    Liang H; Lin Z; McCallum RW
    Med Eng Phys; 2000 Apr; 22(3):229-34. PubMed ID: 10964043
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Dynamics analysis of electrogastrography using Double-Wayland algorithm.
    Matsuura Y; Yokoyama K; Takada H; Shimada K
    Annu Int Conf IEEE Eng Med Biol Soc; 2007; 2007():1973-6. PubMed ID: 18002371
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Signal reconstruction of the slow wave and spike potential from electrogastrogram.
    Qin S; Ding W; Miao L; Xi N; Li H; Yang C
    Biomed Mater Eng; 2015; 26 Suppl 1():S1515-21. PubMed ID: 26405915
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Reconstruction of gastric slow wave from finger photoplethysmographic signal using radial basis function neural network.
    Mohamed Yacin S; Srinivasa Chakravarthy V; Manivannan M
    Med Biol Eng Comput; 2011 Nov; 49(11):1241-7. PubMed ID: 21748397
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Robust time delay estimation of bioelectric signals using least absolute deviation neural network.
    Wang Z; He Z; Chen JD
    IEEE Trans Biomed Eng; 2005 Mar; 52(3):454-62. PubMed ID: 15759575
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Gastric myoelectrical activity in patients with gastric outlet obstruction and idiopathic gastroparesis.
    Brzana RJ; Koch KL; Bingaman S
    Am J Gastroenterol; 1998 Oct; 93(10):1803-9. PubMed ID: 9772035
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Do increased electrogastrographic frequencies always correspond to internal tachygastria?
    Mintchev MP; Bowes KL
    Ann Biomed Eng; 1997; 25(6):1052-8. PubMed ID: 9395050
    [TBL] [Abstract][Full Text] [Related]  

  • 19. A Combined Methodology to Eliminate Artifacts in Multichannel Electrogastrogram Based on Independent Component Analysis and Ensemble Empirical Mode Decomposition.
    Sengottuvel S; Khan PF; Mariyappa N; Patel R; Saipriya S; Gireesan K
    SLAS Technol; 2018 Jun; 23(3):269-280. PubMed ID: 29547700
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Diabetic gastroparesis alters the biomagnetic signature of the gastric slow wave.
    Bradshaw LA; Cheng LK; Chung E; Obioha CB; Erickson JC; Gorman BL; Somarajan S; Richards WO
    Neurogastroenterol Motil; 2016 Jun; 28(6):837-48. PubMed ID: 26839980
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.