These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10396846)

  • 21. Enhanced electrogastrography: A realistic way to salvage a promise that was never kept?
    Poscente MD; Mintchev MP
    World J Gastroenterol; 2017 Jul; 23(25):4517-4528. PubMed ID: 28740340
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Biomagnetic characterization of spatiotemporal parameters of the gastric slow wave.
    Bradshaw LA; Irimia A; Sims JA; Gallucci MR; Palmer RL; Richards WO
    Neurogastroenterol Motil; 2006 Aug; 18(8):619-31. PubMed ID: 16918726
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Non-invasive gastric motility monitor: fast electrogastrogram (fEGG).
    Akin A; Sun HH
    Physiol Meas; 2002 Aug; 23(3):505-19. PubMed ID: 12214759
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Classification of normal and abnormal electrogastrograms using multilayer feedforward neural networks.
    Lin Z; Maris J; Hermans L; Vandewalle J; Chen JD
    Med Biol Eng Comput; 1997 May; 35(3):199-206. PubMed ID: 9246852
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Electrogastrography can recognize gastric electrical uncoupling in dogs.
    Mintchev MP; Otto SJ; Bowes KL
    Gastroenterology; 1997 Jun; 112(6):2006-11. PubMed ID: 9178693
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Association of the status of interstitial cells of Cajal and electrogastrogram parameters, gastric emptying and symptoms in patients with gastroparesis.
    Lin Z; Sarosiek I; Forster J; Damjanov I; Hou Q; McCallum RW
    Neurogastroenterol Motil; 2010 Jan; 22(1):56-61, e10. PubMed ID: 19614868
    [TBL] [Abstract][Full Text] [Related]  

  • 27. Application of Kohonen neural network for the elaboration of electrogastrograms.
    Giacomini M; Ruggiero C; Mansi C
    Stud Health Technol Inform; 2000; 77():185-9. PubMed ID: 11187539
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Filter banks and neural network-based feature extraction and automatic classification of electrogastrogram.
    Wang Z; He Z; Chen JD
    Ann Biomed Eng; 1999; 27(1):88-95. PubMed ID: 9916764
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Use of multichannel electrogastrography for noninvasive assessment of gastric myoelectrical activity in dogs.
    Koenig JB; Martin CE; Dobson H; Mintchev MP
    Am J Vet Res; 2009 Jan; 70(1):11-5. PubMed ID: 19119943
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Abnormal gastric myoelectrical activity and delayed gastric emptying in patients with symptoms suggestive of gastroparesis.
    Chen JD; Lin Z; Pan J; McCallum RW
    Dig Dis Sci; 1996 Aug; 41(8):1538-45. PubMed ID: 8769276
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Acceleration of gastric emptying with electrical stimulation in a canine model of gastroparesis.
    Bellahsène BE; Lind CD; Schirmer BD; Updike OL; McCallum RW
    Am J Physiol; 1992 May; 262(5 Pt 1):G826-34. PubMed ID: 1590392
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Biomagnetic and bioelectric detection of gastric slow wave activity in normal human subjects--a correlation study.
    Somarajan S; Muszynski ND; Obioha C; Richards WO; Bradshaw LA
    Physiol Meas; 2012 Jul; 33(7):1171-9. PubMed ID: 22735166
    [TBL] [Abstract][Full Text] [Related]  

  • 33. [Study on the removal method of electrogastrogram baseline wander based on wavelet transformation].
    Ding W; Qin S; Miao L; Xi N; Li H
    Sheng Wu Yi Xue Gong Cheng Xue Za Zhi; 2012 Dec; 29(6):1189-92, 1196. PubMed ID: 23469554
    [TBL] [Abstract][Full Text] [Related]  

  • 34. The extraction of the new components from electrogastrogram (EGG), using both adaptive filtering and electrocardiographic (ECG) derived respiration signal.
    Komorowski D; Pietraszek S; Tkacz E; Provaznik I
    Biomed Eng Online; 2015 Jun; 14():60. PubMed ID: 26099312
    [TBL] [Abstract][Full Text] [Related]  

  • 35. A model of gastric electrical activity in health and disease.
    Familoni BO; Abell TL; Bowes KL
    IEEE Trans Biomed Eng; 1995 Jul; 42(7):647-57. PubMed ID: 7622148
    [TBL] [Abstract][Full Text] [Related]  

  • 36. Optimized overcomplete signal representation and its applications to time-frequency analysis of electrogastrogram.
    Wang Z; He Z; Chen JD
    Ann Biomed Eng; 1998; 26(5):859-69. PubMed ID: 9779959
    [TBL] [Abstract][Full Text] [Related]  

  • 37. A Deep Convolutional Neural Network Approach to Classify Normal and Abnormal Gastric Slow Wave Initiation From the High Resolution Electrogastrogram.
    Agrusa AS; Gharibans AA; Allegra AA; Kunkel DC; Coleman TP
    IEEE Trans Biomed Eng; 2020 Mar; 67(3):854-867. PubMed ID: 31199249
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Quantitative evaluation of the dynamics of external factors influencing canine gastric electrical activity before and after uncoupling.
    Newton Price C; Mintchev MP
    J Med Eng Technol; 2002; 26(6):239-46. PubMed ID: 12490029
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Detection of gastric slow wave propagation from the cutaneous electrogastrogram.
    Chen JD; Zou X; Lin X; Ouyang S; Liang J
    Am J Physiol; 1999 Aug; 277(2):G424-30. PubMed ID: 10444457
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Non-invasive electrogastrography. Part 1: Correlation between the gastric electrical activity in dogs with implanted and cutaneous electrodes.
    Atanassova E; Daskalov I; Dotsinsky I; Christov I; Atanassova A
    Arch Physiol Biochem; 1995 Aug; 103(4):431-5. PubMed ID: 8548478
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.