These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

145 related articles for article (PubMed ID: 10396846)

  • 41. A real-time weighted-eigenvector MUSIC method for time-frequency analysis of electrogastrogram slow wave.
    Qin S; Miao L; Xi N; Wang Y; Yang C
    Annu Int Conf IEEE Eng Med Biol Soc; 2010; 2010():867-70. PubMed ID: 21097197
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Computer simulation of the impact of different dimensions of the stomach on the validity of electrogastrograms.
    Mintchev MP; Bowes KL
    Med Biol Eng Comput; 1998 Jan; 36(1):7-10. PubMed ID: 9614741
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Analysis of gastric myoelectrical activity from the electrogastrogram signals based on wavelet transform and line length feature.
    Al Kafee A; Akan A
    Proc Inst Mech Eng H; 2018 Apr; 232(4):403-411. PubMed ID: 29441814
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Continuous wavelet analysis as an aid in the representation and interpretation of electrogastrographic signals.
    Qiao W; Sun HH; Chey WY; Lee KY
    Ann Biomed Eng; 1998; 26(6):1072-81. PubMed ID: 9846945
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Detection and deletion of motion artifacts in electrogastrogram using feature analysis and neural networks.
    Liang J; Cheung JY; Chen JD
    Ann Biomed Eng; 1997; 25(5):850-7. PubMed ID: 9300109
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Possibilities of the non-invasive electrogastrography.
    Atanassova E; Daskalov I
    Acta Physiol Pharmacol Bulg; 1995; 21(4):105-11. PubMed ID: 8830883
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Reconstruction of multiple gastric electrical wave fronts using potential based inverse methods.
    Kim JH; Pullan AJ; Cheng LK
    Annu Int Conf IEEE Eng Med Biol Soc; 2011; 2011():1355-8. PubMed ID: 22254568
    [TBL] [Abstract][Full Text] [Related]  

  • 48. In vivo experimental validation of detection of gastric slow waves using a flexible multichannel electrogastrography sensor linear array.
    Sukasem A; Calder S; Angeli-Gordon TR; Andrews CN; O'Grady G; Gharibans A; Du P
    Biomed Eng Online; 2022 Jun; 21(1):43. PubMed ID: 35761323
    [TBL] [Abstract][Full Text] [Related]  

  • 49. A new method for attenuation of respiration artifacts in electrogastrographic (EGG) signals.
    Komorowski D; Tkacz E
    Annu Int Conf IEEE Eng Med Biol Soc; 2015; 2015():6006-9. PubMed ID: 26737660
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Abnormal gastric slow waves in patients with functional dyspepsia assessed by multichannel electrogastrography.
    Lin X; Chen JZ
    Am J Physiol Gastrointest Liver Physiol; 2001 Jun; 280(6):G1370-5. PubMed ID: 11352832
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Computer simulation of the effect of changing abdominal thickness on the electrogastrogram.
    Mintchev MP; Bowes KL
    Med Eng Phys; 1998 Apr; 20(3):177-81. PubMed ID: 9690487
    [TBL] [Abstract][Full Text] [Related]  

  • 52. A pilot study on disturbed gastric myoelectric activity in obstructed defecation syndrome.
    Farid M; Emile SH; Haleem M; El-Hak NG
    J Surg Res; 2018 Jul; 227():95-100. PubMed ID: 29804869
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Pilot acute study of feedback-controlled retrograde peristalsis invoked by neural gastric electrical stimulation.
    Aelen P; Jurkov A; Aulanier A; Mintchev MP
    Physiol Meas; 2009 Mar; 30(3):309-22. PubMed ID: 19234360
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Dynamics of the level of deterministic chaos associated with gastric electrical uncoupling in dogs.
    Carré JY; Høst-Madsen A; Bowes KL; Mintchev MP
    Med Biol Eng Comput; 2001 May; 39(3):322-9. PubMed ID: 11465887
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Time-Delay Mapping of High-Resolution Gastric Slow-Wave Activity.
    Paskaranandavadivel N; OGrady G; Cheng LK
    IEEE Trans Biomed Eng; 2017 Jan; 64(1):166-172. PubMed ID: 27071158
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Electrogastrography in adults and children: the strength, pitfalls, and clinical significance of the cutaneous recording of the gastric electrical activity.
    Riezzo G; Russo F; Indrio F
    Biomed Res Int; 2013; 2013():282757. PubMed ID: 23762836
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Comparison of adaptive filtering in time-, transform- and frequency-domain: an electrogastrographic study.
    Chen JD; Lin Z
    Ann Biomed Eng; 1994; 22(4):423-31. PubMed ID: 7998688
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Stimulus artifact cancellation in the serosal recordings of gastric myoelectric activity using wavelet transform.
    Liang H; Lin Z
    IEEE Trans Biomed Eng; 2002 Jul; 49(7):681-8. PubMed ID: 12083302
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Electrogastrography: measurement, analysis and prospective applications.
    Chen J; McCallum RW
    Med Biol Eng Comput; 1991 Jul; 29(4):339-50. PubMed ID: 1787748
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Efficiency and efficacy of multi-channel gastric electrical stimulation.
    Chen JD; Xu X; Zhang J; Abo M; Lin X; McCallum RW; Ross B
    Neurogastroenterol Motil; 2005 Dec; 17(6):878-82. PubMed ID: 16336504
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 8.