BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10397816)

  • 1. Epoxidation of 1,7-octadiene by pseudomonas oleovorans in a membrane bioreactor.
    Doig SD; Boam AT; Livingston AG; Stuckey DC
    Biotechnol Bioeng; 1999 Jun; 63(5):601-11. PubMed ID: 10397816
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Bioconversion of hydrophobic compounds in a continuous closed-gas-loop bioreactor: feasibility assessment and epoxide production.
    Steinig GH; Livingston AG; Stuckey DC
    Biotechnol Bioeng; 2000 Dec; 70(5):553-63. PubMed ID: 11042552
    [TBL] [Abstract][Full Text] [Related]  

  • 3. A membrane bioreactor for biotransformations of hydrophobic molecules.
    Doig SD; Boam AT; Leak DI; Livingston AG; Stuckey DC
    Biotechnol Bioeng; 1998 Jun; 58(6):587-94. PubMed ID: 10099296
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Epoxidation of 1,7-octadiene by Pseudomonas oleovorans: fermentation in the presence of cyclohexane.
    Schwartz RD; McCoy CJ
    Appl Environ Microbiol; 1977 Jul; 34(1):47-9. PubMed ID: 889327
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Enzymatic epoxidation: synthesis of 7,8-epoxy-1-octene, 1,2-7,8-diepoxyoctane, and 1,2-Epoxyoctane by Pseudomonas oleovorans.
    Schwartz RD; McCoy CJ
    Appl Environ Microbiol; 1976 Jan; 31(1):78-82. PubMed ID: 942210
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Medium chain length alkane solvent-cell transfer rates in two-liquid phase, pseudomonas oleovorans cultures.
    Schmid A; Sonnleitner B; Witholt B
    Biotechnol Bioeng; 1998 Oct; 60(1):10-23. PubMed ID: 10099401
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Pseudomonas oleovorans hydroxylation-epoxidation system: additional strain improvements.
    Schwartz RD; McCoy CJ
    Appl Microbiol; 1973 Aug; 26(2):217-8. PubMed ID: 4743875
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Integrated two-liquid phase bioconversion and product-recovery processes for the oxidation of alkanes: process design and economic evaluation.
    Mathys RG; Schmid A; Witholt B
    Biotechnol Bioeng; 1999 Aug; 64(4):459-77. PubMed ID: 10397885
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Oxidation of 1-alkenes to 1,2-epoxyalkanes by Pseudomonas oleovorans.
    Abbott BJ; Hou CT
    Appl Microbiol; 1973 Jul; 26(1):86-91. PubMed ID: 4726833
    [TBL] [Abstract][Full Text] [Related]  

  • 10. The efficiency of recombinant Escherichia coli as biocatalyst for stereospecific epoxidation.
    Park JB; Bühler B; Habicher T; Hauer B; Panke S; Witholt B; Schmid A
    Biotechnol Bioeng; 2006 Oct; 95(3):501-12. PubMed ID: 16767777
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Ultrasound assisted phase-transfer catalytic epoxidation of 1,7-octadiene - a kinetic study.
    Wang ML; Rajendran V
    Ultrason Sonochem; 2007 Jan; 14(1):46-54. PubMed ID: 16571377
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Continuous production of enantiopure 1,2-epoxyhexane by yeast epoxide hydrolase in a two-phase membrane bioreactor.
    Choi WJ; Choi CY; De Bont JA; Weijers CA
    Appl Microbiol Biotechnol; 2000 Nov; 54(5):641-6. PubMed ID: 11131388
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Synthesis of 1,2-Epoxyoctane by Pseudomonas oleovorans During Growth in a Two-Phase System Containing High Concentrations of 1-Octene.
    de Smet MJ; Wynberg H; Witholt B
    Appl Environ Microbiol; 1981 Nov; 42(5):811-6. PubMed ID: 16345883
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Mass transfer of terpenes through a silicone rubber membrane in a liquid-liquid contacting system.
    Boontawan A; Stuckey DC
    Biotechnol Prog; 2005; 21(6):1680-7. PubMed ID: 16321051
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Immobilization of microbial cells in a mixed matrix of silicone polymer and calcium alginate gel: epoxidation of 1-octene by Nocardia corallina B-276 in organic media.
    Kawakami K; Tsuruda S; Miyagi K
    Biotechnol Prog; 1990; 6(5):357-61. PubMed ID: 1366873
    [TBL] [Abstract][Full Text] [Related]  

  • 16. High cell density cultivation of Pseudomonas oleovorans: growth and production of poly (3-hydroxyalkanoates) in two-liquid phase batch and fed-batch systems.
    Preusting H; van Houten R; Hoefs A; van Langenberghe EK; Favre-Bulle O; Witholt B
    Biotechnol Bioeng; 1993 Mar; 41(5):550-6. PubMed ID: 18609586
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Structural effects on the reactivity of substrates and inhibitors in the epoxidation system of Pseudomonas oleovorans.
    May SW; Schwartz RD; Abbott BJ; Zaborsky OR
    Biochim Biophys Acta; 1975 Sep; 403(1):245-55. PubMed ID: 1174548
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Hydrolysis of triglyceride by the whole cell of Pseudomonas putida 3SK in two-phase batch and continuous reactors systems.
    Lee SY; Rhee JS
    Biotechnol Bioeng; 1994 Aug; 44(4):437-43. PubMed ID: 18618777
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Stereoselective epoxidation of octadiene catalyzed by an enzyme system of Pseudomonas oleovorans.
    May SW; Schwartz RD
    J Am Chem Soc; 1974 Jun; 96(12):4031-2. PubMed ID: 4854399
    [No Abstract]   [Full Text] [Related]  

  • 20. Continuous bioconversion of n-octane to octanoic acid by recombinant Escherichia coli (alk(+)) growing in a two-liquid-phase Chemostat.
    Favre-Bulle O; Weenink E; Vos T; Preusting H; Witholt B
    Biotechnol Bioeng; 1993 Jan; 41(2):263-72. PubMed ID: 18609546
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.