These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

102 related articles for article (PubMed ID: 10397841)

  • 1. Thermodynamic analysis of growth of methanobacterium thermoautotrophicum.
    Schill NA; Liu JS; Stockar Uv
    Biotechnol Bioeng; 1999 Jul; 64(1):74-81. PubMed ID: 10397841
    [TBL] [Abstract][Full Text] [Related]  

  • 2. In search of a thermodynamic description of biomass yields for the chemotrophic growth of microorganisms.
    Heijnen JJ; Van Dijken JP
    Biotechnol Bioeng; 1992 Apr; 39(8):833-58. PubMed ID: 18601018
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Microbial growth by a net heat up-take: a calorimetric and thermodynamic study on acetotrophic methanogenesis by Methanosarcina barkeri.
    Liu JS; Marison IW; von Stockar U
    Biotechnol Bioeng; 2001 Oct; 75(2):170-80. PubMed ID: 11536139
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Does microbial life always feed on negative entropy? Thermodynamic analysis of microbial growth.
    von Stockar U; Liu J
    Biochim Biophys Acta; 1999 Aug; 1412(3):191-211. PubMed ID: 10482783
    [TBL] [Abstract][Full Text] [Related]  

  • 5. A black box mathematical model to calculate auto- and heterotrophic biomass yields based on Gibbs energy dissipation.
    Hoijnen JJ; van Loosdrecht MC; Tijhuis L
    Biotechnol Bioeng; 1992 Dec; 40(10):1139-54. PubMed ID: 18601065
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Thermodynamic and kinetic analysis of the H2 threshold for Methanobacterium bryantii M.o.H.
    Karadagli F; Rittmann BE
    Biodegradation; 2007 Aug; 18(4):439-52. PubMed ID: 17091351
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Energetics of syntrophic propionate oxidation in defined batch and chemostat cocultures.
    Scholten JC; Conrad R
    Appl Environ Microbiol; 2000 Jul; 66(7):2934-42. PubMed ID: 10877789
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Hydrogen regulation of growth, growth yields, and methane gene transcription in Methanobacterium thermoautotrophicum deltaH.
    Morgan RM; Pihl TD; Nölling J; Reeve JN
    J Bacteriol; 1997 Feb; 179(3):889-98. PubMed ID: 9006047
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Microbiological hydrogen (H
    Karadagli F; Marcus A; Rittmann BE
    Biotechnol Bioeng; 2023 Jul; 120(7):1844-1856. PubMed ID: 37148477
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Energetics of Acidianus ambivalens growth in response to oxygen availability.
    Hart C; Gorman-Lewis D
    Geobiology; 2021 Jan; 19(1):48-62. PubMed ID: 32902110
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Thermodynamics of microbial growth and metabolism: an analysis of the current situation.
    von Stockar U; Maskow T; Liu J; Marison IW; Patiño R
    J Biotechnol; 2006 Feb; 121(4):517-33. PubMed ID: 16185782
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Characterization of a 45-kDa flavoprotein and evidence for a rubredoxin, two proteins that could participate in electron transport from H2 to CO2 in methanogenesis in Methanobacterium thermoautotrophicum.
    Nölling J; Ishii M; Koch J; Pihl TD; Reeve JN; Thauer RK; Hedderich R
    Eur J Biochem; 1995 Aug; 231(3):628-38. PubMed ID: 7649162
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Bioenergetic characterization of hyperthermophilic archaean Methanocaldococcus sp. FS406-22.
    Wray AC; Downey AR; Nodal AA; Park KK; Gorman-Lewis D
    Extremophiles; 2024 Jul; 28(3):32. PubMed ID: 39023751
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Adaptation of methane formation and enzyme contents during growth of Methanobacterium thermoautotrophicum (strain deltaH) in a fed-batch fermentor.
    Pennings JL; Vermeij P; de Poorter LM; Keltjens JT; Vogels GD
    Antonie Van Leeuwenhoek; 2000 Apr; 77(3):281-91. PubMed ID: 15188894
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A mathematical model for the kinetics of Methanobacterium bryantii M.o.H. considering hydrogen thresholds.
    Karadagli F; Rittmann BE
    Biodegradation; 2007 Aug; 18(4):453-64. PubMed ID: 17096208
    [TBL] [Abstract][Full Text] [Related]  

  • 16. A thermodynamically based correlation for maintenance gibbs energy requirements in aerobic and anaerobic chemotrophic growth.
    Tijhuis L; Van Loosdrecht MC; Heijnen JJ
    Biotechnol Bioeng; 1993 Aug; 42(4):509-19. PubMed ID: 18613056
    [TBL] [Abstract][Full Text] [Related]  

  • 17. The energetics of HMG box interactions with DNA: thermodynamics of the DNA binding of the HMG box from mouse sox-5.
    Privalov PL; Jelesarov I; Read CM; Dragan AI; Crane-Robinson C
    J Mol Biol; 1999 Dec; 294(4):997-1013. PubMed ID: 10588902
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Evaluation of metabolism using stoichiometry in fermentative biohydrogen.
    Lee HS; Rittmann BE
    Biotechnol Bioeng; 2009 Feb; 102(3):749-58. PubMed ID: 18828179
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Growth kinetics of glucose-limited petunia hybrida cells in chemostat cultures: Determination of experimental values for growth and maintenance parameters.
    de Gucht LP; van der Plas LH
    Biotechnol Bioeng; 1995 Jul; 47(1):42-52. PubMed ID: 18623365
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Growth of Methanosarcina barkeri (Fusaro) under nonmethanogenic conditions by the fermentation of pyruvate to acetate: ATP synthesis via the mechanism of substrate level phosphorylation.
    Bock AK; Schönheit P
    J Bacteriol; 1995 Apr; 177(8):2002-7. PubMed ID: 7721692
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.