BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

95 related articles for article (PubMed ID: 10397860)

  • 1. Use of exogenous specialised bacteria in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in slurry phase conditions.
    Fava F; Bertin L
    Biotechnol Bioeng; 1999 Jul; 64(2):240-9. PubMed ID: 10397860
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Cyclodextrin effects on the ex-situ bioremediation of a chronically polychlorobiphenyl-contaminated soil.
    Fava F; Di Gioia D ; Marchetti L
    Biotechnol Bioeng; 1998 May; 58(4):345-55. PubMed ID: 10099268
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Role of the reactor configuration in the biological detoxification of a dump site-polychlorobiphenyl-contaminated soil in lab-scale slurry phase conditions.
    Fava F; Di Gioia D; Marchetti L
    Appl Microbiol Biotechnol; 2000 Feb; 53(2):243-8. PubMed ID: 10709989
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Soya lecithin effects on the aerobic biodegradation of polychlorinated biphenyls in an artificially contaminated soil.
    Fava F; Di Gioia D
    Biotechnol Bioeng; 2001 Jan; 72(2):177-84. PubMed ID: 11114655
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Effects of humic substances on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in a model soil.
    Fava F; Piccolo A
    Biotechnol Bioeng; 2002 Jan; 77(2):204-11. PubMed ID: 11753927
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Intensification of the aerobic bioremediation of an actual site soil historically contaminated by polychlorinated biphenyls (PCBs) through bioaugmentation with a non acclimated, complex source of microorganisms.
    Di Toro S; Zanaroli G; Fava F
    Microb Cell Fact; 2006 Mar; 5():11. PubMed ID: 16549016
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Methyl-beta-cyclodextrin-enhanced solubilization and aerobic biodegradation of polychlorinated biphenyls in two aged-contaminated soils.
    Fava F; Bertin L; Fedi S; Zannoni D
    Biotechnol Bioeng; 2003 Feb; 81(4):381-90. PubMed ID: 12491523
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Aroclor 1221 aerobic dechlorination by a bacterial co-culture: role of chlorobenzoic acid degrading bacteria in the process.
    Fava F
    Chemosphere; 1996 Apr; 32(8):1477-83. PubMed ID: 8653386
    [TBL] [Abstract][Full Text] [Related]  

  • 9. The presence of glass beads or Triton X-100 in the medium enhances the aerobic dechlorination of Aroclor 1221 in Pseudomonas sp. CPE1 culture.
    Fava F
    Chemosphere; 1996 Apr; 32(8):1469-75. PubMed ID: 8653385
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Effects of randomly methylated-beta-cyclodextrins (RAMEB) on the bioavailability and aerobic biodegradation of polychlorinated biphenyls in three pristine soils spiked with a transformer oil.
    Fava F; Ciccotosto VF
    Appl Microbiol Biotechnol; 2002 Mar; 58(3):393-9. PubMed ID: 11935193
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Use of potassium tellurite for testing the survival and viability of Pseudomonas pseudoalcaligenes KF707 in soil microcosms contaminated with polychlorinated biphenyls.
    Zanaroli G; Fedi S; Carnevali M; Fava F; Zannoni D
    Res Microbiol; 2002; 153(6):353-60. PubMed ID: 12234009
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation of biphenyl and 2-chlorobiphenyl by a Pseudomonas sp. KM-04 isolated from PCBs-contaminated coal mine soil.
    Nam IH; Chon CM; Jung KY; Kim JG
    Bull Environ Contam Toxicol; 2014 Jul; 93(1):89-94. PubMed ID: 24797535
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Effect of yeast extract on growth kinetics during aerobic biodegradation of chlorobenzoic acids.
    Armenante PM; Fava F; Kafkewitz D
    Biotechnol Bioeng; 1995 Jul; 47(2):227-33. PubMed ID: 18623396
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Survival of luxAB-marked Alcaligenes eutrophus H850 in PCB-contaminated soil and sediment.
    Van Dyke MI; Lee H; Trevors JT
    J Chem Technol Biotechnol; 1996 Feb; 65(2):115-22. PubMed ID: 8672293
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Influence of organic and inorganic growth supplements on the aerobic biodegradation of chlorobenzoic acids.
    Fava F; Armenante PM; Kafkewitz D; Marchetti L
    Appl Microbiol Biotechnol; 1995 Apr; 43(1):171-7. PubMed ID: 7766130
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Effects of humic substances and soya lecithin on the aerobic bioremediation of a soil historically contaminated by polycyclic aromatic hydrocarbons (PAHs).
    Fava F; Berselli S; Conte P; Piccolo A; Marchetti L
    Biotechnol Bioeng; 2004 Oct; 88(2):214-23. PubMed ID: 15449300
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Enhanced removal of polychlorinated biphenyls from alfalfa rhizosphere soil in a field study: the impact of a rhizobial inoculum.
    Xu L; Teng Y; Li ZG; Norton JM; Luo YM
    Sci Total Environ; 2010 Feb; 408(5):1007-13. PubMed ID: 19995667
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Bioaugmentation of a polychlorobiphenyl contaminated soil with two aerobic bacterial strains.
    Egorova DO; Demakov VA; Plotnikova EG
    J Hazard Mater; 2013 Oct; 261():378-86. PubMed ID: 23973470
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Bioremediation of atrazine-contaminated soil by repeated applications of atrazine-degrading bacteria.
    Newcombe DA; Crowley DE
    Appl Microbiol Biotechnol; 1999 Jun; 51(6):877-82. PubMed ID: 10422233
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Rapid atrazine mineralisation in soil slurry and moist soil by inoculation of an atrazine-degrading Pseudomonas sp. strain.
    Wenk M; Baumgartner T; Dobovsek J; Fuchs T; Kucsera J; Zopfi J; Stucki G
    Appl Microbiol Biotechnol; 1998 May; 49(5):624-30. PubMed ID: 9650261
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.