These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

116 related articles for article (PubMed ID: 10397864)

  • 1. Modeling, simulation, and kinetic analysis of a heterogeneous reaction system for the enzymatic conversion of poorly soluble substrate.
    Lee DC; Park JH; Kim GJ; Kim HS
    Biotechnol Bioeng; 1999 Aug; 64(3):272-83. PubMed ID: 10397864
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Modeling and kinetic analysis of the reaction system using whole cells with separately and co-expressed D-hydantoinase and N-carbamoylase.
    Park JH; Oh KH; Lee DC; Kim HS
    Biotechnol Bioeng; 2002 Jun; 78(7):779-93. PubMed ID: 12001170
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Optimization of a heterogeneous reaction system for the production of optically active D-amino acids using thermostable D-hydantoinase.
    Lee DC; Kim HS
    Biotechnol Bioeng; 1998 Dec; 60(6):729-38. PubMed ID: 10099482
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Probing the role of tightly bound phosphoenolpyruvate in Escherichia coli 3-deoxy-d-manno-octulosonate 8-phosphate synthase catalysis using quantitative time-resolved electrospray ionization mass spectrometry in the millisecond time range.
    Li Z; Sau AK; Furdui CM; Anderson KS
    Anal Biochem; 2005 Aug; 343(1):35-47. PubMed ID: 15979047
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Simple dissolution-reaction model for enzymatic conversion of suspension of solid substrate.
    Wolff A; Zhu L; Kielland V; Straathof AJ; Jongejan JA; Heijnen JJ
    Biotechnol Bioeng; 1997 Nov; 56(4):433-40. PubMed ID: 18642245
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Electrostatic channeling of substrates between enzyme active sites: comparison of simulation and experiment.
    Elcock AH; Huber GA; McCammon JA
    Biochemistry; 1997 Dec; 36(51):16049-58. PubMed ID: 9405038
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Kinetic modeling of omega-transamination for enzymatic kinetic resolution of alpha-methylbenzylamine.
    Shin JS; Kim BG
    Biotechnol Bioeng; 1998 Dec; 60(5):534-40. PubMed ID: 10099461
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Accurate kinetic modeling of alkaline phosphatase in the Escherichia coli periplasm: implications for enzyme properties and substrate diffusion.
    Martinez MB; Flickinger MC; Nelsestuen GL
    Biochemistry; 1996 Jan; 35(4):1179-86. PubMed ID: 8573572
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complete conversion of D,L-5-monosubstituted hydantoins with a low velocity of chemical racemization into D-amino acids using whole cells of recombinant Escherichia coli.
    Martinez-Rodriguez S; Las Heras-Vazquez FJ; Clemente-Jimenez JM; Mingorance-Cazorla L; Rodriguez-Vico F
    Biotechnol Prog; 2002; 18(6):1201-6. PubMed ID: 12467452
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Enzymatic synthesis of beta-lactam antibiotics. I. Cefazolin].
    Kurochkina VB; Nys PS
    Antibiot Khimioter; 1999; 44(5):12-6. PubMed ID: 10483499
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Description of enzyme kinetics in reversed micelles. 1. Theory.
    Verhaert RM; Hilhorst R; Vermuë M; Schaafsma TJ; Veeger C
    Eur J Biochem; 1990 Jan; 187(1):59-72. PubMed ID: 2298210
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Inverting enantioselectivity by directed evolution of hydantoinase for improved production of L-methionine.
    May O; Nguyen PT; Arnold FH
    Nat Biotechnol; 2000 Mar; 18(3):317-20. PubMed ID: 10700149
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Estimation of kinetic parameters, amount of endogenous substrate and contaminating enzyme activity in a target enzyme reaction.
    Kato T; Inoue N
    Biochim Biophys Acta; 1981 Sep; 661(1):1-11. PubMed ID: 7295732
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Michaelis-Menten equation for degradation of insoluble substrate.
    Andersen M; Kari J; Borch K; Westh P
    Math Biosci; 2018 Feb; 296():93-97. PubMed ID: 29197509
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Process modeling of the lipase-catalyzed dynamic kinetic resolution of (R, S)-suprofen 2,2,2-trifluoroethyl thioester in a hollow-fiber membrane.
    Wang LW; Cheng YC; Tsai SW
    Bioprocess Biosyst Eng; 2004 Dec; 27(1):39-49. PubMed ID: 15645310
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Measurements of kinetic parameters in a microfluidic reactor.
    Kerby MB; Legge RS; Tripathi A
    Anal Chem; 2006 Dec; 78(24):8273-80. PubMed ID: 17165816
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Use of an oxygen microsensor for the determination of intrinsic kinetic parameters of an immobilized oxygen reducing enzyme.
    Hooijmans CM; Geraats SG; Luyben KC
    Biotechnol Bioeng; 1990 May; 35(11):1078-87. PubMed ID: 18592486
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Production of D-amino acid using whole cells of recombinant Escherichia coli with separately and coexpressed D-hydantoinase and N-carbamoylase.
    Park JH; Kim GJ; Kim HS
    Biotechnol Prog; 2000; 16(4):564-70. PubMed ID: 10933829
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Transient enzyme kinetics: graph-theoretic approach.
    Goldstein BN
    Biophys Chem; 2009 May; 141(2-3):193-7. PubMed ID: 19233540
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Kinetics of enzyme systems with unstable suicide substrates.
    Varón R; Garrido-del Solo C; García-Moreno M; García-Cánovas F; Moya-García G; Vidal de Labra J; Havsteen BH
    Biosystems; 1998 Aug; 47(3):177-92. PubMed ID: 9793629
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.