These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

114 related articles for article (PubMed ID: 10397907)

  • 1. Degradation of calcium phosphate ceramics.
    Koerten HK; van der Meulen J
    J Biomed Mater Res; 1999 Jan; 44(1):78-86. PubMed ID: 10397907
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Inflammatory response and degradation of three types of calcium phosphate ceramic in a non-osseous environment.
    van der Meulen J; Koerten HK
    J Biomed Mater Res; 1994 Dec; 28(12):1455-63. PubMed ID: 7876285
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Mouse peritoneal cavity; a model compartment for degradation studies.
    van der Meulen J; Verhoeven MC; Koerten HK
    Eur J Morphol; 1993; 31(1-2):9-12. PubMed ID: 8398565
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Petal-like apatite formed on the surface of tricalcium phosphate ceramic after soaking in distilled water.
    Lin FH; Liao CJ; Chen KS; Su JS; Lin CP
    Biomaterials; 2001 Nov; 22(22):2981-92. PubMed ID: 11575472
    [TBL] [Abstract][Full Text] [Related]  

  • 5. The response of peritoneal macrophages after implantation of several ceramics as measured by the change of ectoenzyme activity.
    Otto B; Ogilvie A
    Biomaterials; 1998 Jun; 19(11-12):1049-55. PubMed ID: 9692803
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Degradation behaviour of a new bioceramic: Ca2P2O7 with addition of Na4P2O7.10H2O.
    Lin FH; Liao CJ; Chen KS; Sun JS; Liu HC
    Biomaterials; 1997 Jul; 18(13):915-21. PubMed ID: 9199761
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Surface reactivity of calcium phosphate based ceramics in a cell culture system.
    John A; Varma HK; Kumari TV
    J Biomater Appl; 2003 Jul; 18(1):63-78. PubMed ID: 12873076
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Transformation of biphasic calcium phosphate ceramics in vivo: ultrastructural and physicochemical characterization.
    Daculsi G; LeGeros RZ; Nery E; Lynch K; Kerebel B
    J Biomed Mater Res; 1989 Aug; 23(8):883-94. PubMed ID: 2777831
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Competitive adsorption of bovine serum albumin and lysozyme on characterized calcium phosphates by polyacrylamide gel electrophoresis method.
    Zhu XD; Fan HS; Zhao CY; Lu J; Ikoma T; Tanaka J; Zhang XD
    J Mater Sci Mater Med; 2007 Nov; 18(11):2243-9. PubMed ID: 17619993
    [TBL] [Abstract][Full Text] [Related]  

  • 10. In vitro degradation, bioactivity, and cytocompatibility of calcium silicate, dimagnesium silicate, and tricalcium phosphate bioceramics.
    Ni S; Chang J
    J Biomater Appl; 2009 Aug; 24(2):139-58. PubMed ID: 18801892
    [TBL] [Abstract][Full Text] [Related]  

  • 11. [Transforming the sintered ostrich cancellous bone to multiphasic calcium phosphate ceramic].
    Yang YW; Mao TQ; Sun MY; Chen FL; Chen SJ; Yang C
    Shanghai Kou Qiang Yi Xue; 2003 Aug; 12(4):277-80. PubMed ID: 14966641
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Biodegradation and bioresorption of calcium phosphate ceramics.
    LeGeros RZ
    Clin Mater; 1993; 14(1):65-88. PubMed ID: 10171998
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Review paper: behavior of ceramic biomaterials derived from tricalcium phosphate in physiological condition.
    Kamitakahara M; Ohtsuki C; Miyazaki T
    J Biomater Appl; 2008 Nov; 23(3):197-212. PubMed ID: 18996965
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Phenotypic expression of bone-related genes in osteoblasts grown on calcium phosphate ceramics with different phase compositions.
    Wang C; Duan Y; Markovic B; Barbara J; Howlett CR; Zhang X; Zreiqat H
    Biomaterials; 2004 Jun; 25(13):2507-14. PubMed ID: 14751735
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Structure degradation and strength changes of sintered calcium phosphate bone scaffolds with different phase structures during simulated biodegradation in vitro.
    Stastny P; Sedlacek R; Suchy T; Lukasova V; Rampichova M; Trunec M
    Mater Sci Eng C Mater Biol Appl; 2019 Jul; 100():544-553. PubMed ID: 30948091
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Physicochemical degradation studies of calcium phosphate glass ceramic in the CaO-P2O5-MgO-TiO2 system.
    Dias AG; Gibson IR; Santos JD; Lopes MA
    Acta Biomater; 2007 Mar; 3(2):263-9. PubMed ID: 17150421
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Dissolution rate of zinc-containing beta-tricalcium phosphate ceramics.
    Ito A; Senda K; Sogo Y; Oyane A; Yamazaki A; Legeros RZ
    Biomed Mater; 2006 Sep; 1(3):134-9. PubMed ID: 18458394
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Substrate geometry directs the in vitro mineralization of calcium phosphate ceramics.
    Bianchi M; Urquia Edreira ER; Wolke JG; Birgani ZT; Habibovic P; Jansen JA; Tampieri A; Marcacci M; Leeuwenburgh SC; van den Beucken JJ
    Acta Biomater; 2014 Feb; 10(2):661-9. PubMed ID: 24184857
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Kinetic study of bone ingrowth and ceramic resorption associated with the implantation of different injectable calcium-phosphate bone substitutes.
    Gauthier O; Bouler JM; Weiss P; Bosco J; Daculsi G; Aguado E
    J Biomed Mater Res; 1999 Oct; 47(1):28-35. PubMed ID: 10400877
    [TBL] [Abstract][Full Text] [Related]  

  • 20. In vitro studies of calcium phosphate glass ceramics with different solubility with the use of human bone marrow cells.
    Dias AG; Lopes MA; Trigo Cabral AT; Santos JD; Fernandes MH
    J Biomed Mater Res A; 2005 Sep; 74(3):347-55. PubMed ID: 15988737
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.