These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

96 related articles for article (PubMed ID: 10398037)

  • 1. Proliferation, morphology, and protein expression by osteoblasts cultured on poly(anhydride-co-imides).
    Attawia MA; Herbert KM; Uhrich KE; Langer R; Laurencin CT
    J Biomed Mater Res; 1999; 48(3):322-7. PubMed ID: 10398037
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Preliminary in vivo report on the osteocompatibility of poly(anhydride-co-imides) evaluated in a tibial model.
    Ibim SE; Uhrich KE; Attawia M; Shastri VR; El-Amin SF; Bronson R; Langer R; Laurencin CT
    J Biomed Mater Res; 1998; 43(4):374-9. PubMed ID: 9855196
    [TBL] [Abstract][Full Text] [Related]  

  • 3. In vitro bone biocompatibility of poly (anhydride-co-imides) containing pyromellitylimidoalanine.
    Attawia MA; Uhrich KE; Botchwey E; Langer R; Laurencin CT
    J Orthop Res; 1996 May; 14(3):445-54. PubMed ID: 8676258
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Poly(anhydride-co-imides): in vivo biocompatibility in a rat model.
    Ibim SM; Uhrich KE; Bronson R; El-Amin SF; Langer RS; Laurencin CT
    Biomaterials; 1998 May; 19(10):941-51. PubMed ID: 9690836
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Chemical changes during in vivo degradation of poly(anhydride-imide) matrices.
    Uhrich KE; Ibim SE; Larrier DR; Langer R; Laurencin CT
    Biomaterials; 1998 Nov; 19(22):2045-50. PubMed ID: 9870755
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Cytotoxicity testing of poly(anhydride-co-imides) for orthopedic applications.
    Attawia MA; Uhrich KE; Botchwey E; Fan M; Langer R; Laurencin CT
    J Biomed Mater Res; 1995 Oct; 29(10):1233-40. PubMed ID: 8557725
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Osteoblast function on synthetic biodegradable polymers.
    Ishaug SL; Yaszemski MJ; Bizios R; Mikos AG
    J Biomed Mater Res; 1994 Dec; 28(12):1445-53. PubMed ID: 7876284
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Invitro study of adherent mandibular osteoblast-like cells on carrier materials.
    Turhani D; Weissenböck M; Watzinger E; Yerit K; Cvikl B; Ewers R; Thurnher D
    Int J Oral Maxillofac Surg; 2005 Jul; 34(5):543-50. PubMed ID: 16053876
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Immunofluorescence and confocal laser scanning microscopy studies of osteoblast growth and phenotypic expression in three-dimensional degradable synthetic matrices.
    Attawia MA; Devin JE; Laurencin CT
    J Biomed Mater Res; 1995 Jul; 29(7):843-8. PubMed ID: 7593023
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 3. Proliferation and differentiation of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate).
    Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4381-7. PubMed ID: 12219828
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Osteoblast-like cell (MC3T3-E1) proliferation on bioerodible polymers: an approach towards the development of a bone-bioerodible polymer composite material.
    Elgendy HM; Norman ME; Keaton AR; Laurencin CT
    Biomaterials; 1993; 14(4):263-9. PubMed ID: 8386557
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Integrin expression by human osteoblasts cultured on degradable polymeric materials applicable for tissue engineered bone.
    El-Amin SF; Attawia M; Lu HH; Shah AK; Chang R; Hickok NJ; Tuan RS; Laurencin CT
    J Orthop Res; 2002 Jan; 20(1):20-8. PubMed ID: 11853086
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Tissue engineered bone-regeneration using degradable polymers: the formation of mineralized matrices.
    Laurencin CT; Attawia MA; Elgendy HE; Herbert KM
    Bone; 1996 Jul; 19(1 Suppl):93S-99S. PubMed ID: 8831000
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Osteogenic differentiation of adipose-derived stromal cells treated with GDF-5 cultured on a novel three-dimensional sintered microsphere matrix.
    Shen FH; Zeng Q; Lv Q; Choi L; Balian G; Li X; Laurencin CT
    Spine J; 2006; 6(6):615-23. PubMed ID: 17088192
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 2. Viability of encapsulated marrow stromal osteoblasts cultured on crosslinking poly(propylene fumarate).
    Payne RG; McGonigle JS; Yaszemski MJ; Yasko AW; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4373-80. PubMed ID: 12219827
    [TBL] [Abstract][Full Text] [Related]  

  • 16. In vitro growth and differentiation of osteoblast-like cells on hydroxyapatite ceramic granule calcified from red algae.
    Turhani D; Cvikl B; Watzinger E; Weissenböck M; Yerit K; Thurnher D; Lauer G; Ewers R
    J Oral Maxillofac Surg; 2005 Jun; 63(6):793-9. PubMed ID: 15944976
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Interactions of osteoblasts and macrophages with biodegradable and highly porous polyesterurethane foam and its degradation products.
    Saad B; Matter S; Ciardelli G; Uhlschmid GK; Welti M; Neuenschwander P; Suter UW
    J Biomed Mater Res; 1996 Nov; 32(3):355-66. PubMed ID: 8897140
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Osteoblastic phenotype expression of MC3T3-E1 cells cultured on polymer surfaces.
    Calvert JW; Chua WC; Gharibjanian NA; Dhar S; Evans GR
    Plast Reconstr Surg; 2005 Aug; 116(2):567-76. PubMed ID: 16079693
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Development of an injectable, in situ crosslinkable, degradable polymeric carrier for osteogenic cell populations. Part 1. Encapsulation of marrow stromal osteoblasts in surface crosslinked gelatin microparticles.
    Payne RG; Yaszemski MJ; Yasko AW; Mikos AG
    Biomaterials; 2002 Nov; 23(22):4359-71. PubMed ID: 12219826
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Co-culture of osteoblasts with immature dural cells causes an increased rate and degree of osteoblast differentiation.
    Spector JA; Greenwald JA; Warren SM; Bouletreau PJ; Crisera FE; Mehrara BJ; Longaker MT
    Plast Reconstr Surg; 2002 Feb; 109(2):631-42; discussion 643-4. PubMed ID: 11818846
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 5.