These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.
145 related articles for article (PubMed ID: 10398067)
1. Drosophila larval neuromuscular junction's responses to reduction of cAMP in the nervous system. Cheung US; Shayan AJ; Boulianne GL; Atwood HL J Neurobiol; 1999 Jul; 40(1):1-13. PubMed ID: 10398067 [TBL] [Abstract][Full Text] [Related]
2. Synaptic ultrastructure in nerve terminals of Drosophila larvae overexpressing the learning gene dunce. Shayan AJ; Atwood HL J Neurobiol; 2000 Apr; 43(1):89-97. PubMed ID: 10756069 [TBL] [Abstract][Full Text] [Related]
3. Cyclic adenosine monophosphate metabolism in synaptic growth, strength, and precision: neural and behavioral phenotype-specific counterbalancing effects between dnc phosphodiesterase and rut adenylyl cyclase mutations. Ueda A; Wu CF J Neurogenet; 2012 Mar; 26(1):64-81. PubMed ID: 22380612 [TBL] [Abstract][Full Text] [Related]
4. Synaptic plasticity in Drosophila memory and hyperexcitable mutants: role of cAMP cascade. Zhong Y; Budnik V; Wu CF J Neurosci; 1992 Feb; 12(2):644-51. PubMed ID: 1371316 [TBL] [Abstract][Full Text] [Related]
5. Altered synaptic plasticity in Drosophila memory mutants with a defective cyclic AMP cascade. Zhong Y; Wu CF Science; 1991 Jan; 251(4990):198-201. PubMed ID: 1670967 [TBL] [Abstract][Full Text] [Related]
6. Role of rut adenylyl cyclase in the ensemble regulation of presynaptic terminal excitability: reduced synaptic strength and precision in a Drosophila memory mutant. Ueda A; Wu CF J Neurogenet; 2009; 23(1-2):185-99. PubMed ID: 19101836 [TBL] [Abstract][Full Text] [Related]
7. Role of cAMP cascade in synaptic stability and plasticity: ultrastructural and physiological analyses of individual synaptic boutons in Drosophila memory mutants. Renger JJ; Ueda A; Atwood HL; Govind CK; Wu CF J Neurosci; 2000 Jun; 20(11):3980-92. PubMed ID: 10818133 [TBL] [Abstract][Full Text] [Related]
8. A modified minimal hemolymph-like solution, HL3.1, for physiological recordings at the neuromuscular junctions of normal and mutant Drosophila larvae. Feng Y; Ueda A; Wu CF J Neurogenet; 2004; 18(2):377-402. PubMed ID: 15763995 [TBL] [Abstract][Full Text] [Related]
9. Activation of metabotropic glutamate receptors enhances synaptic transmission at the Drosophila neuromuscular junction. Zhang D; Kuromi H; Kidokoro Y Neuropharmacology; 1999 May; 38(5):645-57. PubMed ID: 10340302 [TBL] [Abstract][Full Text] [Related]
10. Two independent pathways mediated by cAMP and protein kinase A enhance spontaneous transmitter release at Drosophila neuromuscular junctions. Yoshihara M; Suzuki K; Kidokoro Y J Neurosci; 2000 Nov; 20(22):8315-22. PubMed ID: 11069938 [TBL] [Abstract][Full Text] [Related]
11. Neurotransmitter levels and synaptic strength at the Drosophila larval neuromuscular junction are not altered by mutation in the sluggish-A gene, which encodes proline oxidase and affects adult locomotion. Shayan AJ; Brodin L; Ottersen OP; Birinyi A; Hill CE; Govind CK; Atwood HL; Shupliakov O J Neurogenet; 2000 Sep; 14(3):165-92. PubMed ID: 10992167 [TBL] [Abstract][Full Text] [Related]
12. Electrophysiological methods for recording synaptic potentials from the NMJ of Drosophila larvae. Imlach W; McCabe BD J Vis Exp; 2009 Feb; (24):. PubMed ID: 19229189 [TBL] [Abstract][Full Text] [Related]
13. Tetanic stimulation recruits vesicles from reserve pool via a cAMP-mediated process in Drosophila synapses. Kuromi H; Kidokoro Y Neuron; 2000 Jul; 27(1):133-43. PubMed ID: 10939337 [TBL] [Abstract][Full Text] [Related]
14. [Intracellular cAMP involvement in the synchronized activity of noradrenaline in response to evoked release of the transmitter quanta in the frog synapses]. Bukharaeva EA; Samigullin DV; Nikol'skiĭ EE; Vyskocil F Ross Fiziol Zh Im I M Sechenova; 2000 Apr; 86(4):379-91. PubMed ID: 10870213 [TBL] [Abstract][Full Text] [Related]
15. Long-term in vitro maintenance of neuromuscular junction activity of Drosophila larvae. Ball R; Xing B; Bonner P; Shearer J; Cooper RL Comp Biochem Physiol A Mol Integr Physiol; 2003 Feb; 134(2):247-55. PubMed ID: 12547254 [TBL] [Abstract][Full Text] [Related]
16. The cyclic AMP system and Drosophila learning. Davis RL; Cherry J; Dauwalder B; Han PL; Skoulakis E Mol Cell Biochem; 1995; 149-150():271-8. PubMed ID: 8569740 [TBL] [Abstract][Full Text] [Related]
17. Pre- and post-synaptic mechanisms of synaptic strength homeostasis revealed by slowpoke and shaker K+ channel mutations in Drosophila. Lee J; Ueda A; Wu CF Neuroscience; 2008 Jul; 154(4):1283-96. PubMed ID: 18539401 [TBL] [Abstract][Full Text] [Related]
18. Dominant-negative NSF2 disrupts the structure and function of Drosophila neuromuscular synapses. Stewart BA; Mohtashami M; Rivlin P; Deitcher DL; Trimble WS; Boulianne GL J Neurobiol; 2002 Jun; 51(4):261-71. PubMed ID: 12150502 [TBL] [Abstract][Full Text] [Related]
19. Concomitant alterations of physiological and developmental plasticity in Drosophila CaM kinase II-inhibited synapses. Wang J; Renger JJ; Griffith LC; Greenspan RJ; Wu CF Neuron; 1994 Dec; 13(6):1373-84. PubMed ID: 7993628 [TBL] [Abstract][Full Text] [Related]
20. Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster. Koenig JH; Saito K; Ikeda K J Cell Biol; 1983 Jun; 96(6):1517-22. PubMed ID: 6304107 [TBL] [Abstract][Full Text] [Related] [Next] [New Search]