These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 10398397)

  • 1. Design, synthesis and characterisation of affinity ligands for glycoproteins.
    Palanisamy UD; Hussain A; Iqbal S; Sproule K; Lowe CR
    J Mol Recognit; 1999; 12(1):57-66. PubMed ID: 10398397
    [TBL] [Abstract][Full Text] [Related]  

  • 2. An artificial receptor for glycoproteins.
    Gupta G; Lowe CR
    J Mol Recognit; 2004; 17(3):218-35. PubMed ID: 15137032
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Affinity ligands for glycoprotein purification based on the multi-component Ugi reaction.
    Chen C; Khoury GE; Lowe CR
    J Chromatogr B Analyt Technol Biomed Life Sci; 2014 Oct; 969():171-80. PubMed ID: 25173497
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A strategy for the generation of biomimetic ligands for affinity chromatography. Combinatorial synthesis and biological evaluation of an IgG binding ligand.
    Teng SF; Sproule K; Hussain A; Lowe CR
    J Mol Recognit; 1999; 12(1):67-75. PubMed ID: 10398398
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Synthesis and screening of a rationally designed combinatorial library of affinity ligands mimicking protein L from Peptostreptococcus magnus.
    Roque AC; Taipa MA; Lowe CR
    J Mol Recognit; 2005; 18(3):213-24. PubMed ID: 15688433
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Nucleotide-mimetic synthetic ligands for DNA-recognizing enzymes One-step purification of Pfu DNA polymerase.
    Melissis S; Labrou NE; Clonis YD
    J Chromatogr A; 2006 Jul; 1122(1-2):63-75. PubMed ID: 16712859
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Lock-and-key motif as a concept for designing affinity adsorbents for protein purification.
    Platis D; Sotriffer CA; Clonis Y; Labrou NE
    J Chromatogr A; 2006 Sep; 1128(1-2):138-51. PubMed ID: 16860333
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Synthetic affinity ligands as a novel tool to improve protein stability.
    Sousa IT; Ruiu L; Lowe CR; Taipa MA
    J Mol Recognit; 2009; 22(2):83-90. PubMed ID: 18654989
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Affinity chromatography matures as bioinformatic and combinatorial tools develop.
    Clonis YD
    J Chromatogr A; 2006 Jan; 1101(1-2):1-24. PubMed ID: 16242704
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Characterisation of glycoprotein ligands synthesised using solid-phase combinatorial chemistry.
    Palanisamy UD; Lowe CR
    J Chromatogr A; 2005 May; 1075(1-2):95-102. PubMed ID: 15974122
    [TBL] [Abstract][Full Text] [Related]  

  • 11. A new method for the screening of solid-phase combinatorial libraries for affinity chromatography.
    Roque AC; Taipa MA; Lowe CR
    J Mol Recognit; 2004; 17(3):262-7. PubMed ID: 15137035
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Design, synthesis and evaluation of biomimetic affinity ligands for elastases.
    Filippusson H; Erlendsson LS; Lowe CR
    J Mol Recognit; 2000; 13(6):370-81. PubMed ID: 11114070
    [TBL] [Abstract][Full Text] [Related]  

  • 13. A carbohydrate-binding affinity ligand for the specific enrichment of glycoproteins.
    Chen C; El Khoury G; Zhang P; Rudd PM; Lowe CR
    J Chromatogr A; 2016 Apr; 1444():8-20. PubMed ID: 27040514
    [TBL] [Abstract][Full Text] [Related]  

  • 14. A benzoboroxole-based affinity ligand for glycoprotein purification at physiological pH.
    Rowe L; El Khoury G; Lowe CR
    J Mol Recognit; 2016 May; 29(5):232-8. PubMed ID: 26663254
    [TBL] [Abstract][Full Text] [Related]  

  • 15. A general technique to rank protein-ligand binding affinities and determine allosteric versus direct binding site competition in compound mixtures.
    Annis DA; Nazef N; Chuang CC; Scott MP; Nash HM
    J Am Chem Soc; 2004 Dec; 126(47):15495-503. PubMed ID: 15563178
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Characterization of N-linked oligosaccharides assembled on secretory recombinant glucose oxidase and cell wall mannoproteins from the methylotrophic yeast Hansenula polymorpha.
    Kim MW; Rhee SK; Kim JY; Shimma Y; Chiba Y; Jigami Y; Kang HA
    Glycobiology; 2004 Mar; 14(3):243-51. PubMed ID: 14693910
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Glycopeptides as oligosaccharide mimics: high affinity sialopeptide ligands for sialoadhesin from combinatorial libraries.
    Halkes KM; St Hilaire PM; Crocker PR; Meldal M
    J Comb Chem; 2003; 5(1):18-27. PubMed ID: 12523830
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The third chains of living organisms--a trail of glycobiology that started from the third floor of building 4 in NIH.
    Kobata A
    Arch Biochem Biophys; 2004 Jun; 426(2):107-21. PubMed ID: 15158661
    [TBL] [Abstract][Full Text] [Related]  

  • 19. "Clickable" affinity ligands for effective separation of glycoproteins.
    Suksrichavalit T; Yoshimatsu K; Prachayasittikul V; Bülow L; Ye L
    J Chromatogr A; 2010 Jun; 1217(23):3635-41. PubMed ID: 20403604
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Parallel synthesis and biological screening of dopamine receptor ligands taking advantage of a click chemistry based BAL linker.
    Bettinetti L; Löber S; Hübner H; Gmeiner P
    J Comb Chem; 2005; 7(2):309-16. PubMed ID: 15762761
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.