BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

636 related articles for article (PubMed ID: 10398406)

  • 1. Characterization of protein-glycolipid recognition at the membrane bilayer.
    Evans SV; Roger MacKenzie C
    J Mol Recognit; 1999; 12(3):155-68. PubMed ID: 10398406
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Globoside as a membrane receptor: a consideration of oligosaccharide communication with the hydrophobic domain.
    Jones DH; Lingwood CA; Barber KR; Grant CW
    Biochemistry; 1997 Jul; 36(28):8539-47. PubMed ID: 9214299
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Structure of the shiga-like toxin I B-pentamer complexed with an analogue of its receptor Gb3.
    Ling H; Boodhoo A; Hazes B; Cummings MD; Armstrong GD; Brunton JL; Read RJ
    Biochemistry; 1998 Feb; 37(7):1777-88. PubMed ID: 9485303
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Shiga-like toxins are neutralized by tailored multivalent carbohydrate ligands.
    Kitov PI; Sadowska JM; Mulvey G; Armstrong GD; Ling H; Pannu NS; Read RJ; Bundle DR
    Nature; 2000 Feb; 403(6770):669-72. PubMed ID: 10688205
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Prediction of glycolipid-binding domains from the amino acid sequence of lipid raft-associated proteins: application to HpaA, a protein involved in the adhesion of Helicobacter pylori to gastrointestinal cells.
    Fantini J; Garmy N; Yahi N
    Biochemistry; 2006 Sep; 45(36):10957-62. PubMed ID: 16953581
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A model for cell-surface-exposed carbohydrate moieties suitable for structural studies by NMR spectroscopy.
    Mares J; Müller JU; Skirgailiene A; Neumoin A; Bewley CA; Schmidt RR; Zerbe O
    Chembiochem; 2006 Nov; 7(11):1764-73. PubMed ID: 16952190
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Modeling the carbohydrate-binding specificity of pig edema toxin.
    Cummings MD; Ling H; Armstrong GD; Brunton JL; Read RJ
    Biochemistry; 1998 Feb; 37(7):1789-99. PubMed ID: 9485304
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Structural basis of the preferential binding for globo-series glycosphingolipids displayed by Pseudomonas aeruginosa lectin I.
    Blanchard B; Nurisso A; Hollville E; Tétaud C; Wiels J; Pokorná M; Wimmerová M; Varrot A; Imberty A
    J Mol Biol; 2008 Nov; 383(4):837-53. PubMed ID: 18762193
    [TBL] [Abstract][Full Text] [Related]  

  • 9. How lipids and proteins interact in a membrane: a molecular approach.
    Lee AG
    Mol Biosyst; 2005 Sep; 1(3):203-12. PubMed ID: 16880984
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Influence of phospholipid chain length on verotoxin/globotriaosyl ceramide binding in model membranes: comparison of a supported bilayer film and liposomes.
    Arab S; Lingwood CA
    Glycoconj J; 1996 Apr; 13(2):159-66. PubMed ID: 8737240
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Verotoxins and their glycolipid receptors.
    Lingwood CA
    Adv Lipid Res; 1993; 25():189-211. PubMed ID: 8368148
    [No Abstract]   [Full Text] [Related]  

  • 12. Minor influence of sialic acid on conformation of a membrane-bound oligosaccharide recognition site.
    Jones DH; Barber KR; Grant CW
    Biochemistry; 1996 Apr; 35(15):4803-11. PubMed ID: 8664270
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Adamantyl globotriaosyl ceramide: a monovalent soluble mimic which inhibits verotoxin binding to its glycolipid receptor.
    Mylvaganam M; Lingwood CA
    Biochem Biophys Res Commun; 1999 Apr; 257(2):391-4. PubMed ID: 10198223
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Studies on the structure and mechanism of a bacterial protein toxin by analytical ultracentrifugation and small-angle neutron scattering.
    Gilbert RJ; Heenan RK; Timmins PA; Gingles NA; Mitchell TJ; Rowe AJ; Rossjohn J; Parker MW; Andrew PW; Byron O
    J Mol Biol; 1999 Nov; 293(5):1145-60. PubMed ID: 10547292
    [TBL] [Abstract][Full Text] [Related]  

  • 15. The alphaM1 transmembrane segment of the nicotinic acetylcholine receptor interacts strongly with model membranes.
    De Planque MR; Rijkers DT; Liskamp RM; Separovic F
    Magn Reson Chem; 2004 Feb; 42(2):148-54. PubMed ID: 14745794
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Conformational analysis of blood group A-active glycosphingolipids using HSEA-calculations. The possible significance of the core oligosaccharide chain for the presentation and recognition of the A-determinant.
    Nyholm PG; Samuelsson BE; Breimer M; Pascher I
    J Mol Recognit; 1989 Nov; 2(3):103-13. PubMed ID: 2636900
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Surface plasmon resonance in protein-membrane interactions.
    Besenicar M; Macek P; Lakey JH; Anderluh G
    Chem Phys Lipids; 2006 Jun; 141(1-2):169-78. PubMed ID: 16584720
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Oligosaccharide behavior of complex natural glycosphingolipids in multicomponent model membranes.
    Singh DM; Shan X; Davis JH; Jones DH; Grant CW
    Biochemistry; 1995 Jan; 34(2):451-63. PubMed ID: 7819237
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Effects of membrane lipids on ion channel structure and function.
    Tillman TS; Cascio M
    Cell Biochem Biophys; 2003; 38(2):161-90. PubMed ID: 12777713
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Molecular determinants of ligand specificity in family 11 carbohydrate binding modules: an NMR, X-ray crystallography and computational chemistry approach.
    Viegas A; Brás NF; Cerqueira NM; Fernandes PA; Prates JA; Fontes CM; Bruix M; Romão MJ; Carvalho AL; Ramos MJ; Macedo AL; Cabrita EJ
    FEBS J; 2008 May; 275(10):2524-35. PubMed ID: 18422658
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 32.