These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

155 related articles for article (PubMed ID: 10398558)

  • 1. Evaluation of two methods for monitoring surface cleanliness-ATP bioluminescence and traditional hygiene swabbing.
    Davidson CA; Griffith CJ; Peters AC; Fielding LM
    Luminescence; 1999; 14(1):33-8. PubMed ID: 10398558
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Problems associated with traditional hygiene swabbing: the need for in-house standardization.
    Moore G; Griffith C
    J Appl Microbiol; 2007 Oct; 103(4):1090-103. PubMed ID: 17897214
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Comparison of results of ATP bioluminescence and traditional hygiene swabbing methods for the determination of surface cleanliness at a hospital kitchen.
    Aycicek H; Oguz U; Karci K
    Int J Hyg Environ Health; 2006 Mar; 209(2):203-6. PubMed ID: 16503304
    [TBL] [Abstract][Full Text] [Related]  

  • 4. A comparison of traditional and recently developed methods for monitoring surface hygiene within the food industry: an industry trial.
    Moore G; Griffith C
    Int J Environ Health Res; 2002 Dec; 12(4):317-29. PubMed ID: 12590780
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Adenylate kinase amplification of ATP bioluminescence for hygiene monitoring in the food and beverage industry.
    Corbitt AJ; Bennion N; Forsythe SJ
    Lett Appl Microbiol; 2000 Jun; 30(6):443-7. PubMed ID: 10849273
    [TBL] [Abstract][Full Text] [Related]  

  • 6. The detection of food soils and cells on stainless steel using industrial methods: UV illumination and ATP bioluminescence.
    Whitehead KA; Smith LA; Verran J
    Int J Food Microbiol; 2008 Sep; 127(1-2):121-8. PubMed ID: 18678428
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Microbiological sampling of swine carcasses: a comparison of data obtained by swabbing with medical gauze and data collected routinely by excision at Swedish abattoirs.
    Lindblad M
    Int J Food Microbiol; 2007 Sep; 118(2):180-5. PubMed ID: 17706823
    [TBL] [Abstract][Full Text] [Related]  

  • 8. An evaluation of different methods for the recovery of meticillin-resistant Staphylococcus aureus from environmental surfaces.
    Obee P; Griffith CJ; Cooper RA; Bennion NE
    J Hosp Infect; 2007 Jan; 65(1):35-41. PubMed ID: 17140698
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Inactivation of Escherichia coli, Listeria monocytogenes, Pseudomonas aeruginosa and Staphylococcus aureus on stainless steel and glass surfaces by neutral electrolysed water.
    Deza MA; Araujo M; Garrido MJ
    Lett Appl Microbiol; 2005; 40(5):341-6. PubMed ID: 15836736
    [TBL] [Abstract][Full Text] [Related]  

  • 10. [Possibilities and limits of modern rapid procedures for process control of cleaning and disinfection methods].
    Baumgart J
    Zentralbl Hyg Umweltmed; 1996 Dec; 199(2-4):366-75. PubMed ID: 9409924
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Validation and comparison of three adenosine triphosphate luminometers for monitoring hospital surface sanitization: a Rosetta Stone for adenosine triphosphate testing.
    Sciortino CV; Giles RA
    Am J Infect Control; 2012 Oct; 40(8):e233-9. PubMed ID: 23021416
    [TBL] [Abstract][Full Text] [Related]  

  • 12. New technique to take samples from environmental surfaces using flocked nylon swabs.
    Hedin G; Rynbäck J; Loré B
    J Hosp Infect; 2010 Aug; 75(4):314-7. PubMed ID: 20451296
    [TBL] [Abstract][Full Text] [Related]  

  • 13. The zylux rapid hygiene system for measuring cleanliness.
    Powitz RW; Balsamo JJ
    J Environ Health; 2001 Sep; 64(2):43-4. PubMed ID: 11544850
    [No Abstract]   [Full Text] [Related]  

  • 14. Combining biofunctional magnetic nanoparticles and ATP bioluminescence for rapid detection of Escherichia coli.
    Cheng Y; Liu Y; Huang J; Li K; Zhang W; Xian Y; Jin L
    Talanta; 2009 Feb; 77(4):1332-6. PubMed ID: 19084645
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Variation in detection limits between bacterial growth phases and precision of an ATP bioluminescence system.
    Vogel SJ; Tank M; Goodyear N
    Lett Appl Microbiol; 2014 Apr; 58(4):370-5. PubMed ID: 24330032
    [TBL] [Abstract][Full Text] [Related]  

  • 16. The use of adenosine triphosphate bioluminescence to assess the efficacy of a modified cleaning program implemented within an intensive care setting.
    Moore G; Smyth D; Singleton J; Wilson P
    Am J Infect Control; 2010 Oct; 38(8):617-22. PubMed ID: 20605265
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Environmental monitoring for microbial contamination by batch and flow bioluminescent systems.
    Girotti S; Badiello R; Rossi S; Bolelli L; Luque de Castro MD
    Ann Chim; 2003; 93(5-6):571-81. PubMed ID: 12911149
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Detection of E. coli in beach water within 1 hour using immunomagnetic separation and ATP bioluminescence.
    Lee J; Deininger RA
    Luminescence; 2004; 19(1):31-6. PubMed ID: 14981644
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Validation of the Hygicult E dipslides method in surface hygiene control: a Nordic collaborative study.
    Salo S; Alanko T; Sjöberg AM; Wirtanen G
    J AOAC Int; 2002; 85(2):388-94. PubMed ID: 11990024
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Is it really clean? An evaluation of the efficacy of four methods for determining hospital cleanliness.
    Sherlock O; O'Connell N; Creamer E; Humphreys H
    J Hosp Infect; 2009 Jun; 72(2):140-6. PubMed ID: 19321226
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 8.