BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

187 related articles for article (PubMed ID: 10398719)

  • 41. In vitro and in vivo evidence for the inhibition of brassinosteroid synthesis by propiconazole through interference with side chain hydroxylation.
    Oh K; Matsumoto T; Hoshi T; Yoshizawa Y
    Plant Signal Behav; 2016 May; 11(5):e1158372. PubMed ID: 26987039
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Accumulation of 6-deoxocathasterone and 6-deoxocastasterone in Arabidopsis, pea and tomato is suggestive of common rate-limiting steps in brassinosteroid biosynthesis.
    Nomura T; Sato T; Bishop GJ; Kamiya Y; Takatsuto S; Yokota T
    Phytochemistry; 2001 May; 57(2):171-8. PubMed ID: 11382232
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Recent advances in brassinosteroid biosynthetic pathway: insight into novel brassinosteroid shortcut pathway.
    Ohnishi T
    J Pestic Sci; 2018 Aug; 43(3):159-167. PubMed ID: 30363110
    [TBL] [Abstract][Full Text] [Related]  

  • 44. The conversion of cholest-5-en-3beta-ol into cholest-7-en-3beta-ol by the echinoderms Asterias rubens and Solaster papposus.
    Smith AG; Goad LJ
    Biochem J; 1975 Jan; 146(1):35-40. PubMed ID: 1147903
    [TBL] [Abstract][Full Text] [Related]  

  • 45. Phytosulfokine control of growth occurs in the epidermis, is likely to be non-cell autonomous and is dependent on brassinosteroids.
    Hartmann J; Stührwohldt N; Dahlke RI; Sauter M
    Plant J; 2013 Feb; 73(4):579-90. PubMed ID: 23083315
    [TBL] [Abstract][Full Text] [Related]  

  • 46. Inhibition of Phytosterol Biosynthesis by Azasterols.
    Darnet S; Martin LBB; Mercier P; Bracher F; Geoffroy P; Schaller H
    Molecules; 2020 Mar; 25(5):. PubMed ID: 32131509
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Synthesis of 6-oxy functionalized campest-4-en-3-ones: efficient hydroperoxidation at C-6 of campest-5-en-3-one with molecular oxygen and silica gel.
    Seto H; Fujioka S; Takatsuto S; Koshino H; Shimizu T; Yoshida S
    Steroids; 2000 Aug; 65(8):443-9. PubMed ID: 10936615
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Arabidopsis brassinosteroid-insensitive dwarf12 mutants are semidominant and defective in a glycogen synthase kinase 3beta-like kinase.
    Choe S; Schmitz RJ; Fujioka S; Takatsuto S; Lee MO; Yoshida S; Feldmann KA; Tax FE
    Plant Physiol; 2002 Nov; 130(3):1506-15. PubMed ID: 12428015
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Metabolic conversion of 24-methyl-Delta25-cholesterol to 24-methylcholesterol in higher plants.
    Takahashi K; Nasu K; Mashino T; Morisaki M; Hara N; Fujimoto Y
    Bioorg Med Chem; 2006 Feb; 14(3):732-8. PubMed ID: 16213729
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Genome-wide analysis revealed the complex regulatory network of brassinosteroid effects in photomorphogenesis.
    Song LI; Zhou XY; Li LI; Xue LJ; Yang XI; Xue HW
    Mol Plant; 2009 Jul; 2(4):755-772. PubMed ID: 19825654
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Functional Characterization of Soybean Glyma04g39610 as a Brassinosteroid Receptor Gene and Evolutionary Analysis of Soybean Brassinosteroid Receptors.
    Peng S; Tao P; Xu F; Wu A; Huo W; Wang J
    Int J Mol Sci; 2016 Jun; 17(6):. PubMed ID: 27338344
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis.
    Shimada Y; Goda H; Nakamura A; Takatsuto S; Fujioka S; Yoshida S
    Plant Physiol; 2003 Jan; 131(1):287-97. PubMed ID: 12529536
    [TBL] [Abstract][Full Text] [Related]  

  • 53. A putative role for the tomato genes DUMPY and CURL-3 in brassinosteroid biosynthesis and response.
    Koka CV; Cerny RE; Gardner RG; Noguchi T; Fujioka S; Takatsuto S; Yoshida S; Clouse SD
    Plant Physiol; 2000 Jan; 122(1):85-98. PubMed ID: 10631252
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Involvement of brassinosteroid signals in the floral-induction network of Arabidopsis.
    Li J; Li Y; Chen S; An L
    J Exp Bot; 2010 Oct; 61(15):4221-30. PubMed ID: 20685730
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Biosynthesis of brassinosteroids in cultured cells of Catharanthus roseus.
    Fujioka S; Noguchi T; Watanabe T; Takatsuto S; Yoshida S
    Phytochemistry; 2000 Mar; 53(5):549-53. PubMed ID: 10724179
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Plant brassinosteroid hormones.
    Asami T; Nakano T; Fujioka S
    Vitam Horm; 2005; 72():479-504. PubMed ID: 16492480
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Brassinosteroid Biosynthesis Is Modulated via a Transcription Factor Cascade of COG1, PIF4, and PIF5.
    Wei Z; Yuan T; Tarkowská D; Kim J; Nam HG; Novák O; He K; Gou X; Li J
    Plant Physiol; 2017 Jun; 174(2):1260-1273. PubMed ID: 28438793
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Arabidopsis mutants reveal multiple roles for sterols in plant development.
    Clouse SD
    Plant Cell; 2002 Sep; 14(9):1995-2000. PubMed ID: 12215500
    [No Abstract]   [Full Text] [Related]  

  • 59. Phytosterol content and the campesterol:sitosterol ratio influence cotton fiber development: role of phytosterols in cell elongation.
    Deng S; Wei T; Tan K; Hu M; Li F; Zhai Y; Ye S; Xiao Y; Hou L; Pei Y; Luo M
    Sci China Life Sci; 2016 Feb; 59(2):183-93. PubMed ID: 26803301
    [TBL] [Abstract][Full Text] [Related]  

  • 60. BAT1, a putative acyltransferase, modulates brassinosteroid levels in Arabidopsis.
    Choi S; Cho YH; Kim K; Matsui M; Son SH; Kim SK; Fujioka S; Hwang I
    Plant J; 2013 Feb; 73(3):380-91. PubMed ID: 23020607
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 10.