BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

138 related articles for article (PubMed ID: 10398755)

  • 1. Endogenous ion channels in oocytes of xenopus laevis: recent developments.
    Weber WM
    J Membr Biol; 1999 Jul; 170(1):1-12. PubMed ID: 10398755
    [No Abstract]   [Full Text] [Related]  

  • 2. Ion currents of Xenopus laevis oocytes: state of the art.
    Weber W
    Biochim Biophys Acta; 1999 Oct; 1421(2):213-33. PubMed ID: 10518693
    [No Abstract]   [Full Text] [Related]  

  • 3. Xenopus oocytes as a heterologous expression system for studying ion channels with the patch-clamp technique.
    Tammaro P; Shimomura K; Proks P
    Methods Mol Biol; 2008; 491():127-39. PubMed ID: 18998089
    [TBL] [Abstract][Full Text] [Related]  

  • 4. The ion selectivity of a membrane conductance inactivated by extracellular calcium in Xenopus oocytes.
    Zhang Y; McBride DW; Hamill OP
    J Physiol; 1998 May; 508 ( Pt 3)(Pt 3):763-76. PubMed ID: 9518731
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Xenopus laevis oocytes contain endogenous large conductance Ca2(+)-activated K+ channels.
    Krause JD; Foster CD; Reinhart PH
    Neuropharmacology; 1996; 35(7):1017-22. PubMed ID: 8938732
    [TBL] [Abstract][Full Text] [Related]  

  • 6. A hyperpolarization-activated chloride current in Xenopus laevis oocytes under voltage-clamp.
    Peres A; Bernardini G
    Pflugers Arch; 1983 Oct; 399(2):157-9. PubMed ID: 6316254
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Xenopus borealis as an alternative source of oocytes for biophysical and pharmacological studies of neuronal ion channels.
    Cristofori-Armstrong B; Soh MS; Talwar S; Brown DL; Griffin JD; Dekan Z; Stow JL; King GF; Lynch JW; Rash LD
    Sci Rep; 2015 Oct; 5():14763. PubMed ID: 26440210
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Unidirectional fluxes through ion channels expressed in Xenopus oocytes.
    Stampe P; Begenisich T
    Methods Enzymol; 1998; 293():556-64. PubMed ID: 9711628
    [No Abstract]   [Full Text] [Related]  

  • 9. Evaluation of microtransplantation of rat brain neurolemma into Xenopus laevis oocytes as a technique to study the effect of neurotoxicants on endogenous voltage-sensitive ion channels.
    Murenzi E; Toltin AC; Symington SB; Morgan MM; Clark JM
    Neurotoxicology; 2017 May; 60():260-273. PubMed ID: 27063102
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Patch clamp measurements on Xenopus laevis oocytes: currents through endogenous channels and implanted acetylcholine receptor and sodium channels.
    Methfessel C; Witzemann V; Takahashi T; Mishina M; Numa S; Sakmann B
    Pflugers Arch; 1986 Dec; 407(6):577-88. PubMed ID: 2432468
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Cave Canalem: how endogenous ion channels may interfere with heterologous expression in Xenopus oocytes.
    Terhag J; Cavara NA; Hollmann M
    Methods; 2010 May; 51(1):66-74. PubMed ID: 20123125
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Tetrodotoxin-sensitive sodium current in native Xenopus oocytes.
    Parker I; Miledi R
    Proc R Soc Lond B Biol Sci; 1987 Dec; 232(1268):289-96. PubMed ID: 2449697
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Electrophysiologic recordings from Xenopus oocytes.
    Stühmer W
    Methods Enzymol; 1998; 293():280-300. PubMed ID: 9711614
    [No Abstract]   [Full Text] [Related]  

  • 14. Electrophysiological recording from Xenopus oocytes.
    Stühmer W
    Methods Enzymol; 1992; 207():319-39. PubMed ID: 1382188
    [No Abstract]   [Full Text] [Related]  

  • 15. Voltage-operated channels induced by foreign messenger RNA in Xenopus oocytes.
    Gundersen CB; Miledi R; Parker I
    Proc R Soc Lond B Biol Sci; 1983 Nov; 220(1218):131-40. PubMed ID: 6140681
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Voltage clamp recordings from Xenopus oocytes.
    Dascal N
    Curr Protoc Neurosci; 2001 May; Chapter 6():Unit 6.12. PubMed ID: 18428511
    [TBL] [Abstract][Full Text] [Related]  

  • 17. A calcium-dependent transient outward current in Xenopus laevis oocytes.
    Miledi R
    Proc R Soc Lond B Biol Sci; 1982 Jul; 215(1201):491-7. PubMed ID: 6127718
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Expressing and characterizing mechanosensitive channels in Xenopus oocytes.
    Maksaev G; Haswell ES
    Methods Mol Biol; 2015; 1309():151-69. PubMed ID: 25981775
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Characterization of mRNA responsible for induction of functional sodium channels in Xenopus oocytes.
    Hirono C; Yamagishi S; Ohara R; Hisanaga Y; Nakayama T; Sugiyama H
    Brain Res; 1985 Dec; 359(1-2):57-64. PubMed ID: 2416399
    [TBL] [Abstract][Full Text] [Related]  

  • 20. The role of calmodulin-binding sites in the regulation of the Drosophila TRPL cation channel expressed in Xenopus laevis oocytes by ca2+, inositol 1,4,5-trisphosphate and GTP-binding proteins.
    Lan L; Brereton H; Barritt GJ
    Biochem J; 1998 Mar; 330 ( Pt 3)(Pt 3):1149-58. PubMed ID: 9494079
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 7.