BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

220 related articles for article (PubMed ID: 10398758)

  • 41. Cationic triple-chain amphiphiles facilitate vesicle fusion compared to double-chain or single-chain analogues.
    Koulov AV; Vares L; Jain M; Smith BD
    Biochim Biophys Acta; 2002 Aug; 1564(2):459-65. PubMed ID: 12175929
    [TBL] [Abstract][Full Text] [Related]  

  • 42. Productive hemifusion intermediates in fast vesicle fusion driven by neuronal SNAREs.
    Liu T; Wang T; Chapman ER; Weisshaar JC
    Biophys J; 2008 Feb; 94(4):1303-14. PubMed ID: 17951297
    [TBL] [Abstract][Full Text] [Related]  

  • 43. Isothermal titration calorimetry studies of the binding of the antimicrobial peptide gramicidin S to phospholipid bilayer membranes.
    Abraham T; Lewis RN; Hodges RS; McElhaney RN
    Biochemistry; 2005 Aug; 44(33):11279-85. PubMed ID: 16101312
    [TBL] [Abstract][Full Text] [Related]  

  • 44. Is lipid translocation involved during endo- and exocytosis?
    Devaux PF
    Biochimie; 2000 May; 82(5):497-509. PubMed ID: 10865135
    [TBL] [Abstract][Full Text] [Related]  

  • 45. The lantibiotic nisin induces transmembrane movement of a fluorescent phospholipid.
    Moll GN; Konings WN; Driessen AJ
    J Bacteriol; 1998 Dec; 180(24):6565-70. PubMed ID: 9852000
    [TBL] [Abstract][Full Text] [Related]  

  • 46. A study of carbobenzoxy-D-phenylalanine-L-phenylalanine-glycine, an inhibitor of membrane fusion, in phospholipid bilayers with multinuclear magnetic resonance.
    Dentino AR; Westerman PW; Yeagle PL
    Biochim Biophys Acta; 1995 May; 1235(2):213-20. PubMed ID: 7756328
    [TBL] [Abstract][Full Text] [Related]  

  • 47. Bilayer membrane destabilization induced by dolichylphosphate.
    Schutzbach JS; Jensen JW
    Chem Phys Lipids; 1989 Nov; 51(3-4):213-8. PubMed ID: 2611962
    [TBL] [Abstract][Full Text] [Related]  

  • 48. Interactions between human defensins and lipid bilayers: evidence for formation of multimeric pores.
    Wimley WC; Selsted ME; White SH
    Protein Sci; 1994 Sep; 3(9):1362-73. PubMed ID: 7833799
    [TBL] [Abstract][Full Text] [Related]  

  • 49. Fusion of phospholipid vesicles mediated by cytochrome c.
    Lee S; Kim H
    Arch Biochem Biophys; 1989 May; 271(1):188-99. PubMed ID: 2540712
    [TBL] [Abstract][Full Text] [Related]  

  • 50. Detection and quantification of asymmetric lipid vesicle fusion using deuterium NMR.
    Franzin CM; Macdonald PM
    Biochemistry; 1997 Mar; 36(9):2360-70. PubMed ID: 9054541
    [TBL] [Abstract][Full Text] [Related]  

  • 51. Hemifusion of giant unilamellar vesicles with planar hydrophobic surfaces: a fluorescence microscopy study.
    Zan GH; Tan C; Deserno M; Lanni F; Lösche M
    Soft Matter; 2012; 8(42):10877-10886. PubMed ID: 25383087
    [TBL] [Abstract][Full Text] [Related]  

  • 52. Parameters affecting the fusion of unilamellar phospholipid vesicles with planar bilayer membranes.
    Cohen FS; Akabas MH; Zimmerberg J; Finkelstein A
    J Cell Biol; 1984 Mar; 98(3):1054-62. PubMed ID: 6699081
    [TBL] [Abstract][Full Text] [Related]  

  • 53. Nucleotide and negatively charged lipid-dependent vesicle aggregation caused by SecA. Evidence that SecA contains two lipid-binding sites.
    Breukink E; Keller RC; de Kruijff B
    FEBS Lett; 1993 Sep; 331(1-2):19-24. PubMed ID: 8405403
    [TBL] [Abstract][Full Text] [Related]  

  • 54. Phosphatidic acid-phosphatidylethanolamine interaction and apocytochrome c translocation across model membranes.
    Miao Q; Han X; Yang F
    Biochem J; 2001 Mar; 354(Pt 3):681-8. PubMed ID: 11237873
    [TBL] [Abstract][Full Text] [Related]  

  • 55. Bilayer curvature and certain amphipaths promote poly(ethylene glycol)-induced fusion of dipalmitoylphosphatidylcholine unilamellar vesicles.
    Lentz BR; McIntyre GF; Parks DJ; Yates JC; Massenburg D
    Biochemistry; 1992 Mar; 31(10):2643-53. PubMed ID: 1547207
    [TBL] [Abstract][Full Text] [Related]  

  • 56. Influence of membrane phospholipid composition and structural organization on spontaneous lipid transfer between membranes.
    Pankov R; Markovska T; Antonov P; Ivanova L; Momchilova A
    Gen Physiol Biophys; 2006 Sep; 25(3):313-24. PubMed ID: 17197729
    [TBL] [Abstract][Full Text] [Related]  

  • 57. Interaction of bee venom melittin with zwitterionic and negatively charged phospholipid bilayers: a spin-label electron spin resonance study.
    Kleinschmidt JH; Mahaney JE; Thomas DD; Marsh D
    Biophys J; 1997 Feb; 72(2 Pt 1):767-78. PubMed ID: 9017202
    [TBL] [Abstract][Full Text] [Related]  

  • 58. Transbilayer movement of fluorescent phospholipids in Bacillus megaterium membrane vesicles.
    Hrafnsdóttir S; Nichols JW; Menon AK
    Biochemistry; 1997 Apr; 36(16):4969-78. PubMed ID: 9125519
    [TBL] [Abstract][Full Text] [Related]  

  • 59. Interfacial catalysis by phospholipase A2: substrate specificity in vesicles.
    Ghomashchi F; Yu BZ; Berg O; Jain MK; Gelb MH
    Biochemistry; 1991 Jul; 30(29):7318-29. PubMed ID: 1854740
    [TBL] [Abstract][Full Text] [Related]  

  • 60. Physical and biological properties of cationic triesters of phosphatidylcholine.
    MacDonald RC; Ashley GW; Shida MM; Rakhmanova VA; Tarahovsky YS; Pantazatos DP; Kennedy MT; Pozharski EV; Baker KA; Jones RD; Rosenzweig HS; Choi KL; Qiu R; McIntosh TJ
    Biophys J; 1999 Nov; 77(5):2612-29. PubMed ID: 10545361
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 11.