These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

67 related articles for article (PubMed ID: 10399343)

  • 1. Heavy metal uptake by polyphosphate bodies in living and killed cells of Plectonema boryanum (cyanophycae).
    Torres M; Goldberg J; Jensen TE
    Microbios; 1998; 96(385):141-7. PubMed ID: 10399343
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Nickel sequestering by polyphosphate bodies in Staphylococcus aureus.
    Gonzalez H; Jensen TE
    Microbios; 1998; 93(376):179-85. PubMed ID: 9721673
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Evaluation of different phosphate amendments on availability of metals in contaminated soil.
    Chen S; Xu M; Ma Y; Yang J
    Ecotoxicol Environ Saf; 2007 Jun; 67(2):278-85. PubMed ID: 16887186
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Elemental analysis of uncultured magnetotactic bacteria exposed to heavy metals.
    Keim CN; Lins U; Farina M
    Can J Microbiol; 2001 Dec; 47(12):1132-6. PubMed ID: 11822840
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Confocal laser scanning microscopy coupled to a spectrofluorometric detector as a rapid tool for determining the in vivo effect of metals on phototrophic bacteria.
    Burnat M; Diestra E; Esteve I; Solé A
    Bull Environ Contam Toxicol; 2010 Jan; 84(1):55-60. PubMed ID: 19936996
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Heavy metals in the dump of an abandoned mine in Galicia (NW Spain) and in the spontaneously occurring vegetation.
    Alvarez E; Fernández Marcos ML; Vaamonde C; Fernández-Sanjurjo MJ
    Sci Total Environ; 2003 Sep; 313(1-3):185-97. PubMed ID: 12922070
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Quantitative analysis of the elemental composition and the mass of bacterial polyphosphate bodies using STEM EDX.
    Goldberg J; Gonzalez H; Jensen TE; Corpe WA
    Microbios; 2001; 106(415):177-88. PubMed ID: 11522129
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Effect of elemental sulphur on solubility of soil heavy metals and their uptake by maize.
    Cui Y; Dong Y; Li H; Wang Q
    Environ Int; 2004 May; 30(3):323-8. PubMed ID: 14987861
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Fungi in a heavy metal precipitating stream in the Mansfeld mining district, Germany.
    Ehrman JM; Bärlocher F; Wennrich R; Krauss GJ; Krauss G
    Sci Total Environ; 2008 Jan; 389(2-3):486-96. PubMed ID: 17928036
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Ultrastructural localization of heavy metals in the extraradical mycelium and spores of the arbuscular mycorrhizal fungus Glomus intraradices.
    González-Guerrero M; Melville LH; Ferrol N; Lott JN; Azcón-Aguilar C; Peterson RL
    Can J Microbiol; 2008 Feb; 54(2):103-10. PubMed ID: 18388979
    [TBL] [Abstract][Full Text] [Related]  

  • 11. The importance of exogenous contamination on heavy metal levels in bird feathers. A field experiment with free-living great tits, Parus major.
    Jaspers V; Dauwe T; Pinxten R; Bervoets L; Blust R; Eens M
    J Environ Monit; 2004 Apr; 6(4):356-60. PubMed ID: 15054546
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Aromatic plant production on metal contaminated soils.
    Zheljazkov VD; Craker LE; Xing B; Nielsen NE; Wilcox A
    Sci Total Environ; 2008 Jun; 395(2-3):51-62. PubMed ID: 18353428
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Studies on heavy metal accumulation in aquatic macrophytes from Sevan (Armenia) and Carambolim (India) lake systems.
    Vardanyan LG; Ingole BS
    Environ Int; 2006 Feb; 32(2):208-18. PubMed ID: 16213586
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Study on the contamination of heavy metals and their correlations in mollusks collected from coastal sites along the Chinese Bohai Sea.
    Wang Y; Liang L; Shi J; Jiang G
    Environ Int; 2005 Oct; 31(8):1103-13. PubMed ID: 15936079
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Biosynthesis of silver nanoparticles by filamentous cyanobacteria from a silver(I) nitrate complex.
    Lengke MF; Fleet ME; Southam G
    Langmuir; 2007 Feb; 23(5):2694-9. PubMed ID: 17309217
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Heavy metals in livers of waterbirds from Spain.
    Mateo R; Guitart R
    Arch Environ Contam Toxicol; 2003 Apr; 44(3):398-404. PubMed ID: 12712301
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Contamination assessment of copper, lead, zinc, manganese and nickel in street dust of Baoji, NW China.
    Lu X; Wang L; Lei K; Huang J; Zhai Y
    J Hazard Mater; 2009 Jan; 161(2-3):1058-62. PubMed ID: 18502044
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The role of urban air pollutants on the performance of heavy metal accumulation in Usnea amblyoclada.
    Carreras HA; Wannaz ED; Perez CA; Pignata ML
    Environ Res; 2005 Jan; 97(1):50-7. PubMed ID: 15476733
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Heavy metal speciation in solid-phase materials from a bacterial sulfate reducing bioreactor using sequential extraction procedure combined with acid volatile sulfide analysis.
    Jong T; Parry DL
    J Environ Monit; 2004 Apr; 6(4):278-85. PubMed ID: 15054535
    [TBL] [Abstract][Full Text] [Related]  

  • 20. Risk assessment of heavy metal contaminated soil in the vicinity of a lead/zinc mine.
    Li J; Xie ZM; Zhu YG; Naidu R
    J Environ Sci (China); 2005; 17(6):881-5. PubMed ID: 16465871
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 4.