BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

93 related articles for article (PubMed ID: 103994)

  • 21. LC-MS/MS proteomic analysis of starved Bacillus subtilis cells overexpressing ribonucleotide reductase (nrdEF): implications in stress-associated mutagenesis.
    Castro-Cerritos KV; Lopez-Torres A; Obregón-Herrera A; Wrobel K; Wrobel K; Pedraza-Reyes M
    Curr Genet; 2018 Feb; 64(1):215-222. PubMed ID: 28624879
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Inhibitory effect of prophage SPβ fragments on phage SP10 ribonucleotide reductase function and its multiplication in Bacillus subtilis.
    Yee LM; Matsuoka S; Yano K; Sadaie Y; Asai K
    Genes Genet Syst; 2011; 86(1):7-18. PubMed ID: 21498918
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Ribonucleotide reductase induced by herpes simplex virus has a virus-specified constituent.
    Dutia BM
    J Gen Virol; 1983 Mar; 64 Pt 3():513-21. PubMed ID: 6298343
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Selection of 9-beta-D-arabinofuranosyladenine-resistant human T-lymphoblasts with altered ribonucleotide reductase activity.
    Fridland A
    Cancer Res; 1984 Oct; 44(10):4328-32. PubMed ID: 6380707
    [TBL] [Abstract][Full Text] [Related]  

  • 25. Control of ribonucleotide reductase in heat- and cold-sensitive mammalian cell-cycle mutants.
    Schaer JC; Maurer U; Schindler R
    Biochim Biophys Acta; 1989 Sep; 1009(1):90-3. PubMed ID: 2506931
    [TBL] [Abstract][Full Text] [Related]  

  • 26. Increased synthesis of ribonucleotide reductase after deoxyribonucleic acid inhibition in various species of bacteria.
    Filpula D; Fuchs JA
    J Bacteriol; 1979 Aug; 139(2):694-6. PubMed ID: 110794
    [TBL] [Abstract][Full Text] [Related]  

  • 27. DNA-dependent ATPases in Bacillus subtilis mutants and in competent cells.
    Mazza G; Sidoli A; Riva S
    J Gen Microbiol; 1984 Jan; 130(1):113-7. PubMed ID: 6142920
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Antibacterial activity of radical scavengers against class Ib ribonucleotide reductase from Bacillus anthracis.
    Torrents E; Sjöberg BM
    Biol Chem; 2010; 391(2-3):229-234. PubMed ID: 20030587
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Unusual sensitivity to bleomycin and joint resistance to 9-beta-D-arabinofuranosyladenine and 1-beta-D-arabinofuranosylcytosine of mouse FM3A cell mutants with altered ribonucleotide reductase and thymidylate synthase.
    Ayusawa D; Iwata K; Seno T
    Cancer Res; 1983 Feb; 43(2):814-8. PubMed ID: 6184158
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Molecular mechanisms of drug resistance involving ribonucleotide reductase: hydroxyurea resistance in a series of clonally related mouse cell lines selected in the presence of increasing drug concentrations.
    Choy BK; McClarty GA; Chan AK; Thelander L; Wright JA
    Cancer Res; 1988 Apr; 48(8):2029-35. PubMed ID: 2832057
    [TBL] [Abstract][Full Text] [Related]  

  • 31. A conditional-lethal mutant of bacillus subtilis 168 with a thermosensitive glycerol-3-phosphate cytidylyltransferase, an enzyme specific for the synthesis of the major wall teichoic acid.
    Pooley HM; Abellan FX; Karamata D
    J Gen Microbiol; 1991 Apr; 137(4):921-8. PubMed ID: 1649892
    [TBL] [Abstract][Full Text] [Related]  

  • 32. Efficient growth inhibition of Bacillus anthracis by knocking out the ribonucleotide reductase tyrosyl radical.
    Torrents E; Sahlin M; Biglino D; Gräslund A; Sjöberg BM
    Proc Natl Acad Sci U S A; 2005 Dec; 102(50):17946-51. PubMed ID: 16322104
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Identification of the RsmG methyltransferase target as 16S rRNA nucleotide G527 and characterization of Bacillus subtilis rsmG mutants.
    Nishimura K; Johansen SK; Inaoka T; Hosaka T; Tokuyama S; Tahara Y; Okamoto S; Kawamura F; Douthwaite S; Ochi K
    J Bacteriol; 2007 Aug; 189(16):6068-73. PubMed ID: 17573471
    [TBL] [Abstract][Full Text] [Related]  

  • 34. [Temperature-dependent mutants of Bacillus subtilis A-50 with a diminished level of alkaline proteinase synthesis].
    Dobrzhanskaia EO; Erokhina LI; Abramov ZT
    Genetika; 1976; 12(6):167-70. PubMed ID: 825415
    [TBL] [Abstract][Full Text] [Related]  

  • 35. [DNA synthesizing mutants of Bacillus subtilis].
    Yamaguchi K; Yoshikawa H
    Tanpakushitsu Kakusan Koso; 1972; 17():Suppl:216-21. PubMed ID: 4625415
    [No Abstract]   [Full Text] [Related]  

  • 36. [Bacillus subtilis BSA 170 trp- ura-: a new nutritional mutant with absolute requirements for exogenous tryptophan and uracil for its growth].
    Franco MA; de Torres RA; D'Aquino M
    Rev Argent Microbiol; 1982; 14(3):167-70. PubMed ID: 6821521
    [TBL] [Abstract][Full Text] [Related]  

  • 37. [Vitamin B 6 biosynthesis in Bacillus subtilis].
    Pflug W; Lingens F
    Hoppe Seylers Z Physiol Chem; 1978 May; 359(5):559-70. PubMed ID: 97199
    [TBL] [Abstract][Full Text] [Related]  

  • 38. The effects of mutations at position 253 on the thermostability of the Bacillus subtilis 3-isopropylmalate dehydrogenase subunit interface.
    Ohkuri T; Yamagishi A
    J Biochem; 2007 Jun; 141(6):791-7. PubMed ID: 17389690
    [TBL] [Abstract][Full Text] [Related]  

  • 39. [Transketolase mutation in riboflavin-synthesizing strains of Bacillus subtilis].
    Gershanovich VN; Kukanova AIa; Galushkina ZM; Stepanov AI
    Mol Gen Mikrobiol Virusol; 2000; (3):3-7. PubMed ID: 10975072
    [TBL] [Abstract][Full Text] [Related]  

  • 40. [Manganese-dependent ribonucleotide reductase of Propionibacterium freudenreichii subsp. shermanii: partial purification, characterization, and role in DNA biosynthesis].
    Iordan EP; Bryukhanov AL; Dunaevskiĭ IaE; Pryanishnikova NI; Danilova IV
    Mikrobiologiia; 2000; 69(4):471-7. PubMed ID: 11008681
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 5.