These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

107 related articles for article (PubMed ID: 103995)

  • 1. Control of lactate production by Selenomonas ruminantium: homotropic activation of lactate dehydrogenase by pyruvate.
    Wallace RJ
    J Gen Microbiol; 1978 Jul; 107(1):45-52. PubMed ID: 103995
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Dilution rates influence ammonia-assimilating enzyme activities and cell parameters of Selenomonas ruminantium strain D in continuous (glucose-limited) culture.
    Patterson JA; Chalova VI; Hespell RB; Ricke SC
    J Appl Microbiol; 2010 Jan; 108(1):357-65. PubMed ID: 19702858
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Relationship of lactate dehydrogenase specificity and growth rate to lactate metabolism by Selenomonas ruminantium.
    Appl Microbiol; 1975 Dec; 30(6):916-21. PubMed ID: 174490
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Regulation of carbon flow in Selenomonas ruminantium grown in glucose-limited continuous culture.
    Melville SB; Michel TA; Macy JM
    J Bacteriol; 1988 Nov; 170(11):5305-11. PubMed ID: 3182729
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Influence of CH4 production by Methanobacterium ruminantium on the fermentation of glucose and lactate by Selenomonas ruminantium.
    Chen M; Wolin MJ
    Appl Environ Microbiol; 1977 Dec; 34(6):756-9. PubMed ID: 596874
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Pathway and sites for energy conservation in the metabolism of glucose by Selenomonas ruminantium.
    Melville SB; Michel TA; Macy JM
    J Bacteriol; 1988 Nov; 170(11):5298-304. PubMed ID: 3141385
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Growth and fermentation responses of Selenomonas ruminantium to limiting and non-limiting concentrations of ammonium chloride.
    Ricke SC; Schaefer DM
    Appl Microbiol Biotechnol; 1996 Sep; 46(2):169-75. PubMed ID: 8987647
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Regulation of lactate dehydrogenase and change of fermentation products in streptococci.
    Yamada T; Carlsson J
    J Bacteriol; 1975 Oct; 124(1):55-61. PubMed ID: 1176435
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Effects of laidlomycin propionate and monensin on glucose utilization and nutrient transport by Streptococcus bovis and Selenomonas ruminantium.
    Wampler JL; Martin SA; Hill GM
    J Anim Sci; 1998 Oct; 76(10):2730-6. PubMed ID: 9814916
    [TBL] [Abstract][Full Text] [Related]  

  • 10. Multiple lactate dehydrogenase activities of the rumen bacterium Selenomonas ruminantium.
    Gilmour M; Flint HJ; Mitchell WJ
    Microbiology (Reading); 1994 Aug; 140 ( Pt 8)():2077-84. PubMed ID: 7921257
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Changes in Viability, Cell Composition, and Enzyme Levels During Starvation of Continuously Cultured (Ammonia-Limited) Selenomonas ruminantium.
    Mink RW; Patterson JA; Hespell RB
    Appl Environ Microbiol; 1982 Oct; 44(4):913-22. PubMed ID: 16346116
    [TBL] [Abstract][Full Text] [Related]  

  • 12. The role of lipoic acid in product formation by Enterococcus faecalis NCTC 775 and reconstitution in vivo and in vitro of the pyruvate dehydrogenase complex.
    Snoep JL; van Bommel M; Lubbers F; Teixeira de Mattos MJ; Neijssel OM
    J Gen Microbiol; 1993 Jun; 139 Pt 6():1325-9. PubMed ID: 8360624
    [TBL] [Abstract][Full Text] [Related]  

  • 13. An enzymatic route to produce pyruvate from lactate.
    Ma CQ; Xu P; Qiu JH; Zhang ZJ; Wang KW; Wang M; Zhang YN
    Appl Microbiol Biotechnol; 2004 Nov; 66(1):34-9. PubMed ID: 15252696
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Changes in metabolism of the rumen bacterium Streptococcus bovis H13/1 resulting from alteration in dilution rate and glucose supply per unit time.
    Silley P; Armstrong DG
    J Appl Bacteriol; 1984 Oct; 57(2):345-53. PubMed ID: 6501121
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Effect of a Saccharomyces cerevisiae culture on lactate utilization by the ruminal bacterium Selenomonas ruminantium.
    Nisbet DJ; Martin SA
    J Anim Sci; 1991 Nov; 69(11):4628-33. PubMed ID: 1752834
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Influence of pH on the allosteric properties of lactate dehydrogenase activity of Phycomyces blakesleeanus.
    De Arriaga D; Soler J; Cadenas E
    Biochem J; 1982 May; 203(2):393-400. PubMed ID: 7115294
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Effect of sugars and malate on ruminal microorganisms.
    Martin SA; Sullivan HM; Evans JD
    J Dairy Sci; 2000 Nov; 83(11):2574-9. PubMed ID: 11104277
    [TBL] [Abstract][Full Text] [Related]  

  • 18. Double mutation of the PDC1 and ADH1 genes improves lactate production in the yeast Saccharomyces cerevisiae expressing the bovine lactate dehydrogenase gene.
    Tokuhiro K; Ishida N; Nagamori E; Saitoh S; Onishi T; Kondo A; Takahashi H
    Appl Microbiol Biotechnol; 2009 Apr; 82(5):883-90. PubMed ID: 19122995
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Genetic transfer of lactate-utilizing ability in the rumen bacterium Selenomonas ruminantium.
    Gilmour M; Mitchell WJ; Flint HJ
    Lett Appl Microbiol; 1996 Jan; 22(1):52-6. PubMed ID: 8588888
    [TBL] [Abstract][Full Text] [Related]  

  • 20. [Isolation and in vitro metabolic characterization of a lactate-utilizing bacterium from goat rumen].
    Long L; Mao S; Su Y; Zhu W
    Wei Sheng Wu Xue Bao; 2008 Dec; 48(12):1571-7. PubMed ID: 19271530
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 6.