These tools will no longer be maintained as of December 31, 2024. Archived website can be found here. PubMed4Hh GitHub repository can be found here. Contact NLM Customer Service if you have questions.


BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

108 related articles for article (PubMed ID: 10400392)

  • 21. Intersecting batteries of differentially expressed genes in the early sea urchin embryo.
    Thiebaud P; Goodstein M; Calzone FJ; Thézé N; Britten RJ; Davidson EH
    Genes Dev; 1990 Nov; 4(11):1999-2010. PubMed ID: 2276628
    [TBL] [Abstract][Full Text] [Related]  

  • 22. Gene regulatory factors of the sea urchin embryo. II. Two dissimilar proteins, P3A1 and P3A2, bind to the same target sites that are required for early territorial gene expression.
    Höög C; Calzone FJ; Cutting AE; Britten RJ; Davidson EH
    Development; 1991 May; 112(1):351-64. PubMed ID: 1769340
    [TBL] [Abstract][Full Text] [Related]  

  • 23. Functional organization of DNA elements regulating SM30alpha, a spicule matrix gene of sea urchin embryos.
    Yamasu K; Wilt FH
    Dev Growth Differ; 1999 Feb; 41(1):81-91. PubMed ID: 10445505
    [TBL] [Abstract][Full Text] [Related]  

  • 24. Cell-substrate interactions during sea urchin gastrulation: migrating primary mesenchyme cells interact with and align extracellular matrix fibers that contain ECM3, a molecule with NG2-like and multiple calcium-binding domains.
    Hodor PG; Illies MR; Broadley S; Ettensohn CA
    Dev Biol; 2000 Jun; 222(1):181-94. PubMed ID: 10885756
    [TBL] [Abstract][Full Text] [Related]  

  • 25. A comparative study of repeated sequences in the SM50 gene of some sea urchins.
    Goto M; Matsumoto M; Kitajima T; Hino A
    Zygote; 2000; 8 Suppl 1():S75. PubMed ID: 11191328
    [No Abstract]   [Full Text] [Related]  

  • 26. Gene regulatory networks and developmental plasticity in the early sea urchin embryo: alternative deployment of the skeletogenic gene regulatory network.
    Ettensohn CA; Kitazawa C; Cheers MS; Leonard JD; Sharma T
    Development; 2007 Sep; 134(17):3077-87. PubMed ID: 17670786
    [TBL] [Abstract][Full Text] [Related]  

  • 27. The dystrophin / utrophin homologues in Drosophila and in sea urchin.
    Neuman S; Kaban A; Volk T; Yaffe D; Nudel U
    Gene; 2001 Jan; 263(1-2):17-29. PubMed ID: 11223239
    [TBL] [Abstract][Full Text] [Related]  

  • 28. Characterization of a cDNA encoding a protein involved in formation of the skeleton during development of the sea urchin Lytechinus pictus.
    Livingston BT; Shaw R; Bailey A; Wilt F
    Dev Biol; 1991 Dec; 148(2):473-80. PubMed ID: 1743395
    [TBL] [Abstract][Full Text] [Related]  

  • 29. Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. II. Pro,Asn-rich tandem repeats.
    Zhang B; Xu G; Evans JS
    Biopolymers; 2000 Nov; 54(6):464-75. PubMed ID: 10951331
    [TBL] [Abstract][Full Text] [Related]  

  • 30. Differential distribution of spicule matrix proteins in the sea urchin embryo skeleton.
    Kitajima T; Urakami H
    Dev Growth Differ; 2000 Aug; 42(4):295-306. PubMed ID: 10969729
    [TBL] [Abstract][Full Text] [Related]  

  • 31. Developmental expression of synthetic cis-regulatory systems composed of spatial control elements from two different genes.
    Kirchhamer CV; Bogarad LD; Davidson EH
    Proc Natl Acad Sci U S A; 1996 Nov; 93(24):13849-54. PubMed ID: 8943024
    [TBL] [Abstract][Full Text] [Related]  

  • 32. SM50 repeat-polypeptides self-assemble into discrete matrix subunits and promote appositional calcium carbonate crystal growth during sea urchin tooth biomineralization.
    Mao Y; Satchell PG; Luan X; Diekwisch TG
    Ann Anat; 2016 Jan; 203():38-46. PubMed ID: 26194158
    [TBL] [Abstract][Full Text] [Related]  

  • 33. Territorial expression of three different trans-genes in early sea urchin embryos detected by a whole-mount fluorescence procedure.
    Zeller RW; Cameron RA; Franks RR; Britten RJ; Davidson EH
    Dev Biol; 1992 Jun; 151(2):382-90. PubMed ID: 1601174
    [TBL] [Abstract][Full Text] [Related]  

  • 34. Genomic organization of a gene encoding the spicule matrix protein SM30 in the sea urchin Strongylocentrotus purpuratus.
    Akasaka K; Frudakis TN; Killian CE; George NC; Yamasu K; Khaner O; Wilt FH
    J Biol Chem; 1994 Aug; 269(32):20592-8. PubMed ID: 8051158
    [TBL] [Abstract][Full Text] [Related]  

  • 35. The SpEGF III gene encodes a member of the fibropellins: EGF repeat-containing proteins that form the apical lamina of the sea urchin embryo.
    Bisgrove BW; Raff RA
    Dev Biol; 1993 Jun; 157(2):526-38. PubMed ID: 8500658
    [TBL] [Abstract][Full Text] [Related]  

  • 36. A lineage-specific gene encoding a major matrix protein of the sea urchin embryo spicule. I. Authentication of the cloned gene and its developmental expression.
    Benson S; Sucov H; Stephens L; Davidson E; Wilt F
    Dev Biol; 1987 Apr; 120(2):499-506. PubMed ID: 3556766
    [TBL] [Abstract][Full Text] [Related]  

  • 37. Model peptide studies of sequence repeats derived from the intracrystalline biomineralization protein, SM50. I. GVGGR and GMGGQ repeats.
    Xu G; Evans JS
    Biopolymers; 1999 Apr; 49(4):303-12. PubMed ID: 10079769
    [TBL] [Abstract][Full Text] [Related]  

  • 38. Implication of HpEts in gene regulatory networks responsible for specification of sea urchin skeletogenic primary mesenchyme cells.
    Yajima M; Umeda R; Fuchikami T; Kataoka M; Sakamoto N; Yamamoto T; Akasaka K
    Zoolog Sci; 2010 Aug; 27(8):638-46. PubMed ID: 20695779
    [TBL] [Abstract][Full Text] [Related]  

  • 39. Structure of sea-urchin arylsulfatase gene.
    Yamada K; Akasaka K; Shimada H
    Eur J Biochem; 1989 Dec; 186(1-2):405-10. PubMed ID: 2598936
    [TBL] [Abstract][Full Text] [Related]  

  • 40. Matrix and mineral in the sea urchin larval skeleton.
    Wilt FH
    J Struct Biol; 1999 Jun; 126(3):216-26. PubMed ID: 10475684
    [TBL] [Abstract][Full Text] [Related]  

    [Previous]   [Next]    [New Search]
    of 6.