BIOMARKERS

Molecular Biopsy of Human Tumors

- a resource for Precision Medicine *

199 related articles for article (PubMed ID: 10400580)

  • 1. The unique chaperone operon of Thermotoga maritima: cloning and initial characterization of a functional Hsp70 and small heat shock protein.
    Michelini ET; Flynn GC
    J Bacteriol; 1999 Jul; 181(14):4237-44. PubMed ID: 10400580
    [TBL] [Abstract][Full Text] [Related]  

  • 2. Molecular chaperones HscA/Ssq1 and HscB/Jac1 and their roles in iron-sulfur protein maturation.
    Vickery LE; Cupp-Vickery JR
    Crit Rev Biochem Mol Biol; 2007; 42(2):95-111. PubMed ID: 17453917
    [TBL] [Abstract][Full Text] [Related]  

  • 3. Multistep mechanism of substrate binding determines chaperone activity of Hsp70.
    Mayer MP; Schröder H; Rüdiger S; Paal K; Laufen T; Bukau B
    Nat Struct Biol; 2000 Jul; 7(7):586-93. PubMed ID: 10876246
    [TBL] [Abstract][Full Text] [Related]  

  • 4. Coordinated activation of Hsp70 chaperones.
    Steel GJ; Fullerton DM; Tyson JR; Stirling CJ
    Science; 2004 Jan; 303(5654):98-101. PubMed ID: 14704430
    [TBL] [Abstract][Full Text] [Related]  

  • 5. Iron-sulfur cluster biosynthesis. Molecular chaperone DnaK promotes IscU-bound [2Fe-2S] cluster stability and inhibits cluster transfer activity.
    Wu SP; Mansy SS; Cowan JA
    Biochemistry; 2005 Mar; 44(11):4284-93. PubMed ID: 15766257
    [TBL] [Abstract][Full Text] [Related]  

  • 6. Investigation of the interaction between DnaK and DnaJ by surface plasmon resonance spectroscopy.
    Mayer MP; Laufen T; Paal K; McCarty JS; Bukau B
    J Mol Biol; 1999 Jun; 289(4):1131-44. PubMed ID: 10369787
    [TBL] [Abstract][Full Text] [Related]  

  • 7. Mutations in the DnaK chaperone affecting interaction with the DnaJ cochaperone.
    Gässler CS; Buchberger A; Laufen T; Mayer MP; Schröder H; Valencia A; Bukau B
    Proc Natl Acad Sci U S A; 1998 Dec; 95(26):15229-34. PubMed ID: 9860951
    [TBL] [Abstract][Full Text] [Related]  

  • 8. Cloning, sequencing, and expression of dnaK-operon proteins from the thermophilic bacterium Thermus thermophilus.
    Osipiuk J; Joachimiak A
    Biochim Biophys Acta; 1997 Sep; 1353(3):253-65. PubMed ID: 9349721
    [TBL] [Abstract][Full Text] [Related]  

  • 9. Complementation studies of the DnaK-DnaJ-GrpE chaperone machineries from Vibrio harveyi and Escherichia coli, both in vivo and in vitro.
    Zmijewski MA; Kwiatkowska JM; Lipińska B
    Arch Microbiol; 2004 Dec; 182(6):436-49. PubMed ID: 15448982
    [TBL] [Abstract][Full Text] [Related]  

  • 10. A Trypanosoma cruzi heat shock protein 40 is able to stimulate the adenosine triphosphate hydrolysis activity of heat shock protein 70 and can substitute for a yeast heat shock protein 40.
    Edkins AL; Ludewig MH; Blatch GL
    Int J Biochem Cell Biol; 2004 Aug; 36(8):1585-98. PubMed ID: 15147737
    [TBL] [Abstract][Full Text] [Related]  

  • 11. Molecular chaperones: clasping the prize.
    Gething MJ
    Curr Biol; 1996 Dec; 6(12):1573-6. PubMed ID: 8994816
    [TBL] [Abstract][Full Text] [Related]  

  • 12. Importance of two ATP-binding sites for oligomerization, ATPase activity and chaperone function of mitochondrial Hsp78 protein.
    Krzewska J; Konopa G; Liberek K
    J Mol Biol; 2001 Dec; 314(4):901-10. PubMed ID: 11734006
    [TBL] [Abstract][Full Text] [Related]  

  • 13. Structure-based mutagenesis studies of the peptide substrate binding fragment of type I heat-shock protein 40.
    Li J; Sha B
    Biochem J; 2005 Mar; 386(Pt 3):453-60. PubMed ID: 15500443
    [TBL] [Abstract][Full Text] [Related]  

  • 14. Discontinuous occurrence of the hsp70 (dnaK) gene among Archaea and sequence features of HSP70 suggest a novel outlook on phylogenies inferred from this protein.
    Gribaldo S; Lumia V; Creti R; Conway de Macario E; Sanangelantoni A; Cammarano P
    J Bacteriol; 1999 Jan; 181(2):434-43. PubMed ID: 9882656
    [TBL] [Abstract][Full Text] [Related]  

  • 15. Mutations in the interdomain linker region of DnaK abolish the chaperone action of the DnaK/DnaJ/GrpE system.
    Han W; Christen P
    FEBS Lett; 2001 May; 497(1):55-8. PubMed ID: 11376662
    [TBL] [Abstract][Full Text] [Related]  

  • 16. Modulation of chaperone activities of Hsp70 and Hsp70-2 by a mammalian DnaJ/Hsp40 homolog, DjA4.
    Hafizur RM; Yano M; Gotoh T; Mori M; Terada K
    J Biochem; 2004 Feb; 135(2):193-200. PubMed ID: 15047721
    [TBL] [Abstract][Full Text] [Related]  

  • 17. Specific molecular chaperone interactions and an ATP-dependent conformational change are required during posttranslational protein translocation into the yeast ER.
    McClellan AJ; Endres JB; Vogel JP; Palazzi D; Rose MD; Brodsky JL
    Mol Biol Cell; 1998 Dec; 9(12):3533-45. PubMed ID: 9843586
    [TBL] [Abstract][Full Text] [Related]  

  • 18. The chaperone function of ClpB from Thermus thermophilus depends on allosteric interactions of its two ATP-binding sites.
    Schlee S; Groemping Y; Herde P; Seidel R; Reinstein J
    J Mol Biol; 2001 Mar; 306(4):889-99. PubMed ID: 11243796
    [TBL] [Abstract][Full Text] [Related]  

  • 19. Regulation of ATPase and chaperone cycle of DnaK from Thermus thermophilus by the nucleotide exchange factor GrpE.
    Groemping Y; Klostermeier D; Herrmann C; Veit T; Seidel R; Reinstein J
    J Mol Biol; 2001 Feb; 305(5):1173-83. PubMed ID: 11162122
    [TBL] [Abstract][Full Text] [Related]  

  • 20. All three J-domain proteins of the Escherichia coli DnaK chaperone machinery are DNA binding proteins.
    Gur E; Katz C; Ron EZ
    FEBS Lett; 2005 Mar; 579(9):1935-9. PubMed ID: 15792799
    [TBL] [Abstract][Full Text] [Related]  

    [Next]    [New Search]
    of 10.